Search Results

Documents authored by Raizes, Justin


Document
Asynchronous Multi-Party Quantum Computation

Authors: Vipul Goyal, Chen-Da Liu-Zhang, Justin Raizes, and João Ribeiro

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Multi-party quantum computation (MPQC) allows a set of parties to securely compute a quantum circuit over private quantum data. Current MPQC protocols rely on the fact that the network is synchronous, i.e., messages sent are guaranteed to be delivered within a known fixed delay upper bound, and unfortunately completely break down even when only a single message arrives late. Motivated by real-world networks, the seminal work of Ben-Or, Canetti and Goldreich (STOC'93) initiated the study of multi-party computation for classical circuits over asynchronous networks, where the network delay can be arbitrary. In this work, we begin the study of asynchronous multi-party quantum computation (AMPQC) protocols, where the circuit to compute is quantum. Our results completely characterize the optimal achievable corruption threshold: we present an n-party AMPQC protocol secure up to t < n/4 corruptions, and an impossibility result when t ≥ n/4 parties are corrupted. Remarkably, this characterization differs from the analogous classical setting, where the optimal corruption threshold is t < n/3.

Cite as

Vipul Goyal, Chen-Da Liu-Zhang, Justin Raizes, and João Ribeiro. Asynchronous Multi-Party Quantum Computation. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 62:1-62:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{goyal_et_al:LIPIcs.ITCS.2023.62,
  author =	{Goyal, Vipul and Liu-Zhang, Chen-Da and Raizes, Justin and Ribeiro, Jo\~{a}o},
  title =	{{Asynchronous Multi-Party Quantum Computation}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{62:1--62:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.62},
  URN =		{urn:nbn:de:0030-drops-175655},
  doi =		{10.4230/LIPIcs.ITCS.2023.62},
  annote =	{Keywords: Quantum Cryptography, Multiparty Computation, Asynchronous}
}
Document
Interaction-Preserving Compilers for Secure Computation

Authors: Nico Döttling, Vipul Goyal, Giulio Malavolta, and Justin Raizes

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In this work we consider the following question: What is the cost of security for multi-party protocols? Specifically, given an insecure protocol where parties exchange (in the worst case) Γ bits in N rounds, is it possible to design a secure protocol with communication complexity close to Γ and N rounds? We systematically study this problem in a variety of settings and we propose solutions based on the intractability of different cryptographic problems. For the case of two parties we design an interaction-preserving compiler where the number of bits exchanged in the secure protocol approaches Γ and the number of rounds is exactly N, assuming the hardness of standard problems over lattices. For the more general multi-party case, we obtain the same result assuming either (i) an additional round of interaction or (ii) the existence of extractable witness encryption and succinct non-interactive arguments of knowledge. As a contribution of independent interest, we construct the first multi-key fully homomorphic encryption scheme with message-to-ciphertext ratio (i.e., rate) of 1 - o(1), assuming the hardness of the learning with errors (LWE) problem. We view our work as a support for the claim that, as far as interaction and communication are concerned, one does not need to pay a significant price for security in multi-party protocols.

Cite as

Nico Döttling, Vipul Goyal, Giulio Malavolta, and Justin Raizes. Interaction-Preserving Compilers for Secure Computation. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dottling_et_al:LIPIcs.ITCS.2022.57,
  author =	{D\"{o}ttling, Nico and Goyal, Vipul and Malavolta, Giulio and Raizes, Justin},
  title =	{{Interaction-Preserving Compilers for Secure Computation}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.57},
  URN =		{urn:nbn:de:0030-drops-156534},
  doi =		{10.4230/LIPIcs.ITCS.2022.57},
  annote =	{Keywords: Multiparty Computation, Communication Complexity, Fully Homomorphic Encryption}
}
Document
Time-Traveling Simulators Using Blockchains and Their Applications

Authors: Vipul Goyal, Justin Raizes, and Pratik Soni

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Blockchain technology has the potential of transforming cryptography. We study the problem of round-complexity of zero-knowledge, and more broadly, of secure computation in the blockchain-hybrid model, where all parties can access the blockchain as an oracle. We study zero-knowledge and secure computation through the lens of a new security notion where the simulator is given the ability to "time-travel” or more accurately, to look into the future states of the blockchain and use this information to perform simulation. Such a time-traveling simulator gives a novel security guarantee of the following form: whatever the adversary could have learnt from an interaction, it could have computed on its own shortly into the future (e.g., a few hours from now). We exhibit the power of time-traveling simulators by constructing round-efficient protocols in the blockchain-hybrid model. In particular, we construct: 1) Three-round zero-knowledge (ZK) argument for NP with a polynomial-time black-box time-traveling simulator. 2) Three-round secure two-party computation (2PC) for any functionality with a polynomial-time black-box time-traveling simulator for both parties. In addition to standard cryptographic assumptions, we rely on natural hardness assumptions for Proof-of-Work based blockchains. In comparison, in the plain model, three-round protocols with black-box simulation are impossible, and constructions with non-black-box simulation for ZK require novel cryptographic assumptions while no construction for three-round 2PC is known. Our three-round 2PC result relies on a new, two-round extractable commitment that admits a time-traveling extractor.

Cite as

Vipul Goyal, Justin Raizes, and Pratik Soni. Time-Traveling Simulators Using Blockchains and Their Applications. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 81:1-81:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goyal_et_al:LIPIcs.ITCS.2022.81,
  author =	{Goyal, Vipul and Raizes, Justin and Soni, Pratik},
  title =	{{Time-Traveling Simulators Using Blockchains and Their Applications}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{81:1--81:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.81},
  URN =		{urn:nbn:de:0030-drops-156770},
  doi =		{10.4230/LIPIcs.ITCS.2022.81},
  annote =	{Keywords: Cryptography, Zero Knowledge, Secure Two-Party Computation, Blockchain}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail