Search Results

Documents authored by Randolph, Tim


Document
Testing Sumsets Is Hard

Authors: Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A subset S of the Boolean hypercube 𝔽₂ⁿ is a sumset if S = {a + b : a, b ∈ A} for some A ⊆ 𝔽₂ⁿ. Sumsets are central objects of study in additive combinatorics, where they play a role in several of the field’s most important results. We prove a lower bound of Ω(2^{n/2}) for the number of queries needed to test whether a Boolean function f:𝔽₂ⁿ → {0,1} is the indicator function of a sumset, ruling out an efficient testing algorithm for sumsets. Our lower bound for testing sumsets follows from sharp bounds on the related problem of shift testing, which may be of independent interest. We also give a near-optimal {2^{n/2} ⋅ poly(n)}-query algorithm for a smoothed analysis formulation of the sumset refutation problem. Finally, we include a simple proof that the number of different sumsets in 𝔽₂ⁿ is 2^{(1±o(1))2^{n-1}}.

Cite as

Xi Chen, Shivam Nadimpalli, Tim Randolph, Rocco A. Servedio, and Or Zamir. Testing Sumsets Is Hard. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ESA.2025.14,
  author =	{Chen, Xi and Nadimpalli, Shivam and Randolph, Tim and Servedio, Rocco A. and Zamir, Or},
  title =	{{Testing Sumsets Is Hard}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.14},
  URN =		{urn:nbn:de:0030-drops-244822},
  doi =		{10.4230/LIPIcs.ESA.2025.14},
  annote =	{Keywords: Sumsets, additive combinatorics, property testing, Boolean functions}
}
Document
Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM

Authors: Tim Randolph and Karol Węgrzycki

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We study the parameterized complexity of algorithmic problems whose input is an integer set A in terms of the doubling constant 𝒞 := |A+A| / |A|, a fundamental measure of additive structure. We present evidence that this new parameterization is algorithmically useful in the form of new results for two difficult, well-studied problems: Integer Programming and Subset Sum. First, we show that determining the feasibility of bounded Integer Programs is a tractable problem when parameterized in the doubling constant. Specifically, we prove that the feasibility of an integer program ℐ with n polynomially-bounded variables and m constraints can be determined in time n^{O_𝒞(1)} ⋅ poly(|ℐ|) when the column set of the constraint matrix has doubling constant 𝒞. Second, we show that the Subset Sum and Unbounded Subset Sum problems can be solved in time n^{O_C(1)} and n^{O_𝒞(log log log n)}, respectively, where the O_C notation hides functions that depend only on the doubling constant 𝒞. We also show the equivalence of achieving an FPT algorithm for Subset Sum with bounded doubling and achieving a milestone result for the parameterized complexity of Box ILP. Finally, we design near-linear time algorithms for k-SUM as well as tight lower bounds for 4-SUM and nearly tight lower bounds for k-SUM, under the k-SUM conjecture. Several of our results rely on a new proof that Freiman’s Theorem, a central result in additive combinatorics, can be made efficiently constructive. This result may be of independent interest.

Cite as

Tim Randolph and Karol Węgrzycki. Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{randolph_et_al:LIPIcs.ESA.2024.96,
  author =	{Randolph, Tim and W\k{e}grzycki, Karol},
  title =	{{Parameterized Algorithms on Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{96:1--96:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.96},
  URN =		{urn:nbn:de:0030-drops-211672},
  doi =		{10.4230/LIPIcs.ESA.2024.96},
  annote =	{Keywords: Parameterized algorithms, parameterized complexity, additive combinatorics, Subset Sum, integer programming, doubling constant}
}
Document
RANDOM
Subset Sum in Time 2^{n/2} / poly(n)

Authors: Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A major goal in the area of exact exponential algorithms is to give an algorithm for the (worst-case) n-input Subset Sum problem that runs in time 2^{(1/2 - c)n} for some constant c > 0. In this paper we give a Subset Sum algorithm with worst-case running time O(2^{n/2} ⋅ n^{-γ}) for a constant γ > 0.5023 in standard word RAM or circuit RAM models. To the best of our knowledge, this is the first improvement on the classical "meet-in-the-middle" algorithm for worst-case Subset Sum, due to Horowitz and Sahni, which can be implemented in time O(2^{n/2}) in these memory models [Horowitz and Sahni, 1974]. Our algorithm combines a number of different techniques, including the "representation method" introduced by Howgrave-Graham and Joux [Howgrave-Graham and Joux, 2010] and subsequent adaptations of the method in Austrin, Kaski, Koivisto, and Nederlof [Austrin et al., 2016], and Nederlof and Węgrzycki [Jesper Nederlof and Karol Wegrzycki, 2021], and "bit-packing" techniques used in the work of Baran, Demaine, and Pǎtraşcu [Baran et al., 2005] on subquadratic algorithms for 3SUM.

Cite as

Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset Sum in Time 2^{n/2} / poly(n). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2023.39,
  author =	{Chen, Xi and Jin, Yaonan and Randolph, Tim and Servedio, Rocco A.},
  title =	{{Subset Sum in Time 2^\{n/2\} / poly(n)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{39:1--39:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  URN =		{urn:nbn:de:0030-drops-188641},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.39},
  annote =	{Keywords: Exact algorithms, subset sum, log shaving}
}
Document
A Note on the Complexity of Private Simultaneous Messages with Many Parties

Authors: Marshall Ball and Tim Randolph

Published in: LIPIcs, Volume 230, 3rd Conference on Information-Theoretic Cryptography (ITC 2022)


Abstract
For k = ω(log n), we prove a Ω(k²n / log(kn)) lower bound on private simultaneous messages (PSM) with k parties who receive n-bit inputs. This extends the Ω(n) lower bound due to Appelbaum, Holenstein, Mishra and Shayevitz [Journal of Cryptology, 2019] to the many-party (k = ω(log n)) setting. It is the first PSM lower bound that increases quadratically with the number of parties, and moreover the first unconditional, explicit bound that grows with both k and n. This note extends the work of Ball, Holmgren, Ishai, Liu, and Malkin [ITCS 2020], who prove communication complexity lower bounds on decomposable randomized encodings (DREs), which correspond to the special case of k-party PSMs with n = 1. To give a concise and readable introduction to the method, we focus our presentation on perfect PSM schemes.

Cite as

Marshall Ball and Tim Randolph. A Note on the Complexity of Private Simultaneous Messages with Many Parties. In 3rd Conference on Information-Theoretic Cryptography (ITC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 230, pp. 7:1-7:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ball_et_al:LIPIcs.ITC.2022.7,
  author =	{Ball, Marshall and Randolph, Tim},
  title =	{{A Note on the Complexity of Private Simultaneous Messages with Many Parties}},
  booktitle =	{3rd Conference on Information-Theoretic Cryptography (ITC 2022)},
  pages =	{7:1--7:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-238-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{230},
  editor =	{Dachman-Soled, Dana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2022.7},
  URN =		{urn:nbn:de:0030-drops-164855},
  doi =		{10.4230/LIPIcs.ITC.2022.7},
  annote =	{Keywords: Secure computation, Private Simultaneous Messages}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail