Search Results

Documents authored by Ray, Arka


Document
Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding

Authors: Anand Louis, Alantha Newman, and Arka Ray

Published in: LIPIcs, Volume 323, 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024)


Abstract
We consider the problem of linearly ordered (LO) coloring of hypergraphs. A hypergraph has an LO coloring if there is a vertex coloring, using a set of ordered colors, so that (i) no edge is monochromatic, and (ii) each edge has a unique maximum color. It is an open question as to whether or not a 2-LO colorable 3-uniform hypergraph can be LO colored with 3 colors in polynomial time. Nakajima and Živný recently gave a polynomial-time algorithm to color such hypergraphs with Õ(n^{1/3}) colors and asked if SDP methods can be used directly to obtain improved bounds. Our main result is to show how to use SDP-based rounding methods to produce an LO coloring with Õ(n^{1/5}) colors for such hypergraphs. We show how to reduce the problem to cases with highly structured SDP solutions, which we call balanced hypergraphs. Then we discuss how to apply classic SDP-rounding tools in this case to obtain improved bounds.

Cite as

Anand Louis, Alantha Newman, and Arka Ray. Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{louis_et_al:LIPIcs.FSTTCS.2024.30,
  author =	{Louis, Anand and Newman, Alantha and Ray, Arka},
  title =	{{Improved Linearly Ordered Colorings of Hypergraphs via SDP Rounding}},
  booktitle =	{44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-355-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{323},
  editor =	{Barman, Siddharth and Lasota, S{\l}awomir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2024.30},
  URN =		{urn:nbn:de:0030-drops-222199},
  doi =		{10.4230/LIPIcs.FSTTCS.2024.30},
  annote =	{Keywords: hypergraph coloring, SDP rounding, promise constraint satisfaction problems}
}
Document
Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes

Authors: Anand Louis, Rameesh Paul, and Arka Ray

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
There are a lot of recent works on generalizing the spectral theory of graphs and graph partitioning to k-uniform hypergraphs. There have been two broad directions toward this goal. One generalizes the notion of graph conductance to hypergraph conductance [Louis, Makarychev - TOC'16; Chan, Louis, Tang, Zhang - JACM'18]. In the second approach, one can view a hypergraph as a simplicial complex and study its various topological properties [Linial, Meshulam - Combinatorica'06; Meshulam, Wallach - RSA'09; Dotterrer, Kaufman, Wagner - SoCG'16; Parzanchevski, Rosenthal - RSA'17] and spectral properties [Kaufman, Mass - ITCS'17; Dinur, Kaufman - FOCS'17; Kaufman, Openheim - STOC'18; Oppenheim - DCG'18; Kaufman, Openheim - Combinatorica'20]. In this work, we attempt to bridge these two directions of study by relating the spectrum of up-down walks and swap walks on the simplicial complex, a downward closed set system, to hypergraph expansion. More precisely, we study the simplicial complex obtained by downward closing the given hypergraph and random walks between its levels X(l), i.e., the sets of cardinality l. In surprising contrast to random walks on graphs, we show that the spectral gap of swap walks and up-down walks between level m and l with 1 < m ⩽ l cannot be used to infer any bounds on hypergraph conductance. Moreover, we show that the spectral gap of swap walks between X(1) and X(k-1) cannot be used to infer any bounds on hypergraph conductance. In contrast, we give a Cheeger-like inequality relating the spectra of walks between level 1 and l for any l ⩽ k to hypergraph expansion. This is a surprising difference between swaps walks and up-down walks! Finally, we also give a construction to show that the well-studied notion of link expansion in simplicial complexes cannot be used to bound hypergraph expansion in a Cheeger-like manner.

Cite as

Anand Louis, Rameesh Paul, and Arka Ray. Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{louis_et_al:LIPIcs.SWAT.2024.33,
  author =	{Louis, Anand and Paul, Rameesh and Ray, Arka},
  title =	{{Sparse Cuts in Hypergraphs from Random Walks on Simplicial Complexes}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.33},
  URN =		{urn:nbn:de:0030-drops-200739},
  doi =		{10.4230/LIPIcs.SWAT.2024.33},
  annote =	{Keywords: Sparse Cuts, Random Walks, Link Expansion, Hypergraph Expansion, Simplicial Complexes, High Dimensional Expander, Threshold Rank}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail