Search Results

Documents authored by Roy, Anupam


Document
Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut

Authors: Surender Baswana, Koustav Bhanja, and Anupam Roy

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Let G be a directed graph on n vertices and m edges. In this article, we study (s,t)-cuts of second minimum capacity and present the following algorithmic and graph-theoretic results. 1) Second (s,t)-mincut: Vazirani and Yannakakis [ICALP 1992] designed the first algorithm for computing an (s,t)-cut of second minimum capacity using {O}(n²) maximum (s,t)-flow computations. We present the following algorithm that improves the running time significantly. For directed integer-weighted graphs, there is an algorithm that can compute an (s,t)-cut of second minimum capacity using Õ(√n) maximum (s,t)-flow computations with high probability. To achieve this result, a close relationship of independent interest is established between (s,t)-cuts of second minimum capacity and global mincuts in directed weighted graphs. 2) Minimum+1 (s,t)-cuts: Minimum+1 (s,t)-cuts have been studied quite well recently [Baswana, Bhanja, and Pandey, ICALP 2022 & TALG 2023], which is a special case of second (s,t)-mincut. We present the following structural result and the first nontrivial algorithm for minimum+1 (s,t)-cuts. 3) Algorithm: For directed multi-graphs, we design an algorithm that, given any maximum (s,t)-flow, computes a minimum+1 (s,t)-cut, if it exists, in O(m) time. 4) Structure: The existing structures for storing and characterizing all minimum+1 (s,t)-cuts occupy {O}(mn) space [Baswana, Bhanja, and Pandey, TALG 2023]. For undirected multi-graphs, we design a directed acyclic graph (DAG) occupying only {O}(m) space that stores and characterizes all minimum+1 (s,t)-cuts. This matches the space bound of the widely-known DAG structure for all (s,t)-mincuts [Picard and Queyranne, Math. Prog. Studies 1980]. 5) Dual Edge Sensitivity Oracle: The study of minimum+1 (s,t)-cuts often turns out to be useful in designing dual edge sensitivity oracles - a compact data structure for efficiently reporting an (s,t)-mincut after insertion/failure of any given pair of query edges. It has been shown recently [Bhanja, ICALP 2025] that any dual edge sensitivity oracle for (s,t)-mincut in undirected multi-graphs must occupy Ω(n²) space in the worst-case irrespective of the query time. Interestingly, for undirected unweighted simple graphs, we break this quadratic barrier while achieving a non-trivial query time as follows. There is an O(n√n) space data structure that can report an (s,t)-mincut in O(min{m,n√n}) time after the insertion/failure of any given pair of query edges. To arrive at our results, as one of our key techniques, we establish interesting relationships between (s,t)-cuts of capacity (minimum+Δ), Δ ≥ 0, and maximum (s,t)-flow. We believe that these techniques and the graph-theoretic result in 2.(b) are of independent interest.

Cite as

Surender Baswana, Koustav Bhanja, and Anupam Roy. Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 68:1-68:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{baswana_et_al:LIPIcs.ESA.2025.68,
  author =	{Baswana, Surender and Bhanja, Koustav and Roy, Anupam},
  title =	{{Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{68:1--68:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.68},
  URN =		{urn:nbn:de:0030-drops-245369},
  doi =		{10.4230/LIPIcs.ESA.2025.68},
  annote =	{Keywords: mincut, second mincut, compact structure, fault tolerant, sensitivity oracle, dual edges, st mincut, global mincut, characterization}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail