Search Results

Documents authored by Safra, Muli


Document
RANDOM
NP-Hardness of Almost Coloring Almost 3-Colorable Graphs

Authors: Yahli Hecht, Dor Minzer, and Muli Safra

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
A graph G = (V,E) is said to be (k,δ) almost colorable if there is a subset of vertices V' ⊆ V of size at least (1-δ)|V| such that the induced subgraph of G on V' is k-colorable. We prove that for all k, there exists δ > 0 such for all ε > 0, given a graph G it is NP-hard (under randomized reductions) to distinguish between: 1) Yes case: G is (3,ε) almost colorable. 2) No case: G is not (k,δ) almost colorable. This improves upon an earlier result of Khot et al. [Irit Dinur et al., 2018], who showed a weaker result wherein in the "yes case" the graph is (4,ε) almost colorable.

Cite as

Yahli Hecht, Dor Minzer, and Muli Safra. NP-Hardness of Almost Coloring Almost 3-Colorable Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 51:1-51:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hecht_et_al:LIPIcs.APPROX/RANDOM.2023.51,
  author =	{Hecht, Yahli and Minzer, Dor and Safra, Muli},
  title =	{{NP-Hardness of Almost Coloring Almost 3-Colorable Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{51:1--51:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.51},
  URN =		{urn:nbn:de:0030-drops-188761},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.51},
  annote =	{Keywords: PCP, Hardness of approximation}
}
Document
Theorems of KKL, Friedgut, and Talagrand via Random Restrictions and Log-Sobolev Inequality

Authors: Esty Kelman, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We give alternate proofs for three related results in analysis of Boolean functions, namely the KKL Theorem, Friedgut’s Junta Theorem, and Talagrand’s strengthening of the KKL Theorem. We follow a new approach: looking at the first Fourier level of the function after a suitable random restriction and applying the Log-Sobolev inequality appropriately. In particular, we avoid using the hypercontractive inequality that is common to the original proofs. Our proofs might serve as an alternate, uniform exposition to these theorems and the techniques might benefit further research.

Cite as

Esty Kelman, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Theorems of KKL, Friedgut, and Talagrand via Random Restrictions and Log-Sobolev Inequality. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kelman_et_al:LIPIcs.ITCS.2021.26,
  author =	{Kelman, Esty and Khot, Subhash and Kindler, Guy and Minzer, Dor and Safra, Muli},
  title =	{{Theorems of KKL, Friedgut, and Talagrand via Random Restrictions and Log-Sobolev Inequality}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.26},
  URN =		{urn:nbn:de:0030-drops-135657},
  doi =		{10.4230/LIPIcs.ITCS.2021.26},
  annote =	{Keywords: Fourier Analysis, Hypercontractivity, Log-Sobolev Inequality}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail