Search Results

Documents authored by Scheidt, Benjamin


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation

Authors: Benjamin Scheidt and Nicole Schweikardt

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We introduce the 2-sorted counting logic GC^k and its restriction RGC^k that express properties of hypergraphs. These logics have available k variables to address hyperedges, an unbounded number of variables to address vertices of a hypergraph, and atomic formulas E(e,v) to express that a vertex v is contained in a hyperedge e. We show that two hypergraphs H,H' satisfy the same sentences of the logic RGC^k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of generalised hypertree width at most k. Here, H,H' are called homomorphism indistinguishable over a class 𝒞 if for every hypergraph G ∈ 𝒞 the number of homomorphisms from G to H equals the number of homomorphisms from G to H'. This result can be viewed as a lifting (from graphs to hypergraphs) of a result by Dvořák (2010) stating that any two (undirected, simple, finite) graphs H,H' are indistinguishable by the k+1-variable counting logic C^{k+1} if, and only if, they are homomorphism indistinguishable over the class of graphs of tree-width at most k.

Cite as

Benjamin Scheidt and Nicole Schweikardt. Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 79:1-79:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{scheidt_et_al:LIPIcs.MFCS.2023.79,
  author =	{Scheidt, Benjamin and Schweikardt, Nicole},
  title =	{{Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{79:1--79:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.79},
  URN =		{urn:nbn:de:0030-drops-186131},
  doi =		{10.4230/LIPIcs.MFCS.2023.79},
  annote =	{Keywords: counting logics, guarded logics, homomorphism counting, hypertree decompositions, hypergraphs, incidence graphs, quantum graphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail