Search Results

Documents authored by Semanišinová, Žaneta


Document
Temporal Valued Constraint Satisfaction Problems

Authors: Manuel Bodirsky, Édouard Bonnet, and Žaneta Semanišinová

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the computational complexity of the valued constraint satisfaction problem (VCSP) for every valued structure over ℚ that is preserved by all order-preserving bijections. Such VCSPs will be called temporal, in analogy to the (classical) constraint satisfaction problem: a relational structure is preserved by all order-preserving bijections if and only if all its relations have a first-order definition in (ℚ; <), and the CSPs for such structures are called temporal CSPs. Many optimization problems that have been studied intensively in the literature can be phrased as a temporal VCSP. We prove that a temporal VCSP is in P, or NP-complete. Our analysis uses the concept of fractional polymorphisms. This is the first dichotomy result for VCSPs over infinite domains which is complete in the sense that it treats all valued structures that contain a given automorphism group.

Cite as

Manuel Bodirsky, Édouard Bonnet, and Žaneta Semanišinová. Temporal Valued Constraint Satisfaction Problems. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bodirsky_et_al:LIPIcs.MFCS.2025.24,
  author =	{Bodirsky, Manuel and Bonnet, \'{E}douard and Semani\v{s}inov\'{a}, \v{Z}aneta},
  title =	{{Temporal Valued Constraint Satisfaction Problems}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.24},
  URN =		{urn:nbn:de:0030-drops-241311},
  doi =		{10.4230/LIPIcs.MFCS.2025.24},
  annote =	{Keywords: Constraint Satisfaction Problems, valued CSPs, temporal CSPs, fractional polymorphisms, complexity dichotomy, min CSPs}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Identifying Tractable Quantified Temporal Constraints Within Ord-Horn

Authors: Jakub Rydval, Žaneta Semanišinová, and Michał Wrona

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The constraint satisfaction problem, parameterized by a relational structure, provides a general framework for expressing computational decision problems. Already the restriction to the class of all finite structures forms an interesting microcosm on its own, but to express decision problems in temporal reasoning one has to take a step beyond the finite-domain realm. An important class of templates used in this context are temporal structures, i.e., structures over ℚ whose relations are first-order definable using the usual countable dense linear order without endpoints. In the standard setting, which allows only existential quantification over input variables, the complexity of finite and temporal constraints has been fully classified. In the quantified setting, i.e., when one also allows universal quantifiers, there is only a handful of partial classification results and many concrete cases of unknown complexity. This paper presents a significant progress towards understanding the complexity of the quantified constraint satisfaction problem for temporal structures. We provide a complexity dichotomy for quantified constraints over the Ord-Horn fragment, which played an important role in understanding the complexity of constraints both over temporal structures and in Allen’s interval algebra. We show that all problems under consideration are in P or coNP-hard. In particular, we determine the complexity of the quantified constraint satisfaction problem for (ℚ;x = y⇒ x ≥ z), hereby settling a question open for more than ten years.

Cite as

Jakub Rydval, Žaneta Semanišinová, and Michał Wrona. Identifying Tractable Quantified Temporal Constraints Within Ord-Horn. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 151:1-151:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rydval_et_al:LIPIcs.ICALP.2024.151,
  author =	{Rydval, Jakub and Semani\v{s}inov\'{a}, \v{Z}aneta and Wrona, Micha{\l}},
  title =	{{Identifying Tractable Quantified Temporal Constraints Within Ord-Horn}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{151:1--151:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.151},
  URN =		{urn:nbn:de:0030-drops-202944},
  doi =		{10.4230/LIPIcs.ICALP.2024.151},
  annote =	{Keywords: constraint satisfaction problems, quantifiers, dichotomy, temporal reasoning, Ord-Horn}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail