Search Results

Documents authored by Shahali, Ali


Document
Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime

Authors: Tomasz Kociumaka and Ali Shahali

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The tree edit distance is a natural dissimilarity measure between rooted ordered trees whose nodes are labeled over an alphabet Σ. It is defined as the minimum number of node edits - insertions, deletions, and relabelings - required to transform one tree into the other. The weighted variant assigns costs ≥ 1 to edits (based on node labels), minimizing total cost rather than edit count. The unweighted tree edit distance between two trees of total size n can be computed in 𝒪(n^{2.6857}) time; in contrast, determining the weighted tree edit distance is fine-grained equivalent to the All-Pairs Shortest Paths (APSP) problem and requires n³/2^Ω(√{log n}) time [Nogler, Polak, Saha, Vassilevska Williams, Xu, Ye; STOC'25]. These impractical super-quadratic times for large, similar trees motivate the bounded version, parameterizing runtime by the distance k to enable faster algorithms for k ≪ n. Prior algorithms for bounded unweighted edit distance achieve 𝒪(nk²log n) [Akmal & Jin; ICALP’21] and 𝒪(n + k⁷log k) [Das, Gilbert, Hajiaghayi, Kociumaka, Saha; STOC'23]. For weighted, only 𝒪(n + k^{15}) is known [Das, Gilbert, Hajiaghayi, Kociumaka, Saha; STOC'23]. We present an 𝒪(n + k⁶ log k)-time algorithm for bounded tree edit distance in both weighted/unweighted settings. First, we devise a simpler weighted 𝒪(nk² log n)-time algorithm. Next, we exploit periodic structures in input trees via an optimized universal kernel: modifying prior 𝒪(n)-time 𝒪(k⁵)-size kernels to generate such structured instances, enabling efficient analysis.

Cite as

Tomasz Kociumaka and Ali Shahali. Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 94:1-94:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kociumaka_et_al:LIPIcs.ESA.2025.94,
  author =	{Kociumaka, Tomasz and Shahali, Ali},
  title =	{{Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{94:1--94:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.94},
  URN =		{urn:nbn:de:0030-drops-245634},
  doi =		{10.4230/LIPIcs.ESA.2025.94},
  annote =	{Keywords: tree edit distance, edit distance, kernelization, dynamic programming}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail