Search Results

Documents authored by Silas, Shashwat


Document
Sharp Threshold Rates for Random Codes

Authors: Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Suppose that 𝒫 is a property that may be satisfied by a random code C ⊂ Σⁿ. For example, for some p ∈ (0,1), 𝒫 might be the property that there exist three elements of C that lie in some Hamming ball of radius pn. We say that R^* is the threshold rate for 𝒫 if a random code of rate R^* + ε is very likely to satisfy 𝒫, while a random code of rate R^* - ε is very unlikely to satisfy 𝒫. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property 𝒫 above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general.

Cite as

Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters. Sharp Threshold Rates for Random Codes. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.ITCS.2021.5,
  author =	{Guruswami, Venkatesan and Mosheiff, Jonathan and Resch, Nicolas and Silas, Shashwat and Wootters, Mary},
  title =	{{Sharp Threshold Rates for Random Codes}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.5},
  URN =		{urn:nbn:de:0030-drops-135446},
  doi =		{10.4230/LIPIcs.ITCS.2021.5},
  annote =	{Keywords: Coding theory, Random codes, Sharp thresholds}
}
Document
RANDOM
Bounds for List-Decoding and List-Recovery of Random Linear Codes

Authors: Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
A family of error-correcting codes is list-decodable from error fraction p if, for every code in the family, the number of codewords in any Hamming ball of fractional radius p is less than some integer L that is independent of the code length. It is said to be list-recoverable for input list size 𝓁 if for every sufficiently large subset of codewords (of size L or more), there is a coordinate where the codewords take more than 𝓁 values. The parameter L is said to be the "list size" in either case. The capacity, i.e., the largest possible rate for these notions as the list size L → ∞, is known to be 1-h_q(p) for list-decoding, and 1-log_q 𝓁 for list-recovery, where q is the alphabet size of the code family. In this work, we study the list size of random linear codes for both list-decoding and list-recovery as the rate approaches capacity. We show the following claims hold with high probability over the choice of the code (below q is the alphabet size, and ε > 0 is the gap to capacity). - A random linear code of rate 1 - log_q(𝓁) - ε requires list size L ≥ 𝓁^{Ω(1/ε)} for list-recovery from input list size 𝓁. This is surprisingly in contrast to completely random codes, where L = O(𝓁/ε) suffices w.h.p. - A random linear code of rate 1 - h_q(p) - ε requires list size L ≥ ⌊ {h_q(p)/ε+0.99}⌋ for list-decoding from error fraction p, when ε is sufficiently small. - A random binary linear code of rate 1 - h₂(p) - ε is list-decodable from average error fraction p with list size with L ≤ ⌊ {h₂(p)/ε}⌋ + 2. (The average error version measures the average Hamming distance of the codewords from the center of the Hamming ball, instead of the maximum distance as in list-decoding.) The second and third results together precisely pin down the list sizes for binary random linear codes for both list-decoding and average-radius list-decoding to three possible values. Our lower bounds follow by exhibiting an explicit subset of codewords so that this subset - or some symbol-wise permutation of it - lies in a random linear code with high probability. This uses a recent characterization of (Mosheiff, Resch, Ron-Zewi, Silas, Wootters, 2019) of configurations of codewords that are contained in random linear codes. Our upper bound follows from a refinement of the techniques of (Guruswami, Håstad, Sudan, Zuckerman, 2002) and strengthens a previous result of (Li, Wootters, 2018), which applied to list-decoding rather than average-radius list-decoding.

Cite as

Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters. Bounds for List-Decoding and List-Recovery of Random Linear Codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.APPROX/RANDOM.2020.9,
  author =	{Guruswami, Venkatesan and Li, Ray and Mosheiff, Jonathan and Resch, Nicolas and Silas, Shashwat and Wootters, Mary},
  title =	{{Bounds for List-Decoding and List-Recovery of Random Linear Codes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.9},
  URN =		{urn:nbn:de:0030-drops-126126},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.9},
  annote =	{Keywords: list-decoding, list-recovery, random linear codes, coding theory}
}
Document
RANDOM
On List Recovery of High-Rate Tensor Codes

Authors: Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat Silas

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway, Ron-Zewi, and Wootters (FOCS'17). In that work it was shown that the tensor product of an efficient (poly-time) high-rate globally list recoverable code is approximately locally list recoverable, as well as globally list recoverable in probabilistic near-linear time. This was used in turn to give the first capacity-achieving list decodable codes with (1) local list decoding algorithms, and with (2) probabilistic near-linear time global list decoding algorithms. This also yielded constant-rate codes approaching the Gilbert-Varshamov bound with probabilistic near-linear time global unique decoding algorithms. In the current work we obtain the following results: 1) The tensor product of an efficient (poly-time) high-rate globally list recoverable code is globally list recoverable in deterministic near-linear time. This yields in turn the first capacity-achieving list decodable codes with deterministic near-linear time global list decoding algorithms. It also gives constant-rate codes approaching the Gilbert-Varshamov bound with deterministic near-linear time global unique decoding algorithms. 2) If the base code is additionally locally correctable, then the tensor product is (genuinely) locally list recoverable. This yields in turn (non-explicit) constant-rate codes approaching the Gilbert-Varshamov bound that are locally correctable with query complexity and running time N^{o(1)}. This improves over prior work by Gopi et. al. (SODA'17; IEEE Transactions on Information Theory'18) that only gave query complexity N^{epsilon} with rate that is exponentially small in 1/epsilon. 3) A nearly-tight combinatorial lower bound on output list size for list recovering high-rate tensor codes. This bound implies in turn a nearly-tight lower bound of N^{Omega(1/log log N)} on the product of query complexity and output list size for locally list recovering high-rate tensor codes.

Cite as

Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat Silas. On List Recovery of High-Rate Tensor Codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 68:1-68:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kopparty_et_al:LIPIcs.APPROX-RANDOM.2019.68,
  author =	{Kopparty, Swastik and Resch, Nicolas and Ron-Zewi, Noga and Saraf, Shubhangi and Silas, Shashwat},
  title =	{{On List Recovery of High-Rate Tensor Codes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{68:1--68:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.68},
  URN =		{urn:nbn:de:0030-drops-112832},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.68},
  annote =	{Keywords: Coding theory, Tensor codes, List-decoding and recovery, Local codes}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail