Search Results

Documents authored by Sricharan, A. R.


Document
RANDOM
Private Counting of Distinct Elements in the Turnstile Model and Extensions

Authors: Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Privately counting distinct elements in a stream is a fundamental data analysis problem with many applications in machine learning. In the turnstile model, Jain et al. [NeurIPS2023] initiated the study of this problem parameterized by the maximum flippancy of any element, i.e., the number of times that the count of an element changes from 0 to above 0 or vice versa. They give an item-level (ε,δ)-differentially private algorithm whose additive error is tight with respect to that parameterization. In this work, we show that a very simple algorithm based on the sparse vector technique achieves a tight additive error for item-level (ε,δ)-differential privacy and item-level ε-differential privacy with regards to a different parameterization, namely the sum of all flippancies. Our second result is a bound which shows that for a large class of algorithms, including all existing differentially private algorithms for this problem, the lower bound from item-level differential privacy extends to event-level differential privacy. This partially answers an open question by Jain et al. [NeurIPS2023].

Cite as

Monika Henzinger, A. R. Sricharan, and Teresa Anna Steiner. Private Counting of Distinct Elements in the Turnstile Model and Extensions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 40:1-40:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.APPROX/RANDOM.2024.40,
  author =	{Henzinger, Monika and Sricharan, A. R. and Steiner, Teresa Anna},
  title =	{{Private Counting of Distinct Elements in the Turnstile Model and Extensions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{40:1--40:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.40},
  URN =		{urn:nbn:de:0030-drops-210335},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.40},
  annote =	{Keywords: differential privacy, turnstile model, counting distinct elements}
}
Document
Electrical Flows for Polylogarithmic Competitive Oblivious Routing

Authors: Gramoz Goranci, Monika Henzinger, Harald Räcke, Sushant Sachdeva, and A. R. Sricharan

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
Oblivious routing is a well-studied paradigm that uses static precomputed routing tables for selecting routing paths within a network. Existing oblivious routing schemes with polylogarithmic competitive ratio for general networks are tree-based, in the sense that routing is performed according to a convex combination of trees. However, this restriction to trees leads to a construction that has time quadratic in the size of the network and does not parallelize well. In this paper we study oblivious routing schemes based on electrical routing. In particular, we show that general networks with n vertices and m edges admit a routing scheme that has competitive ratio O(log² n) and consists of a convex combination of only O(√m) electrical routings. This immediately leads to an improved construction algorithm with time Õ(m^{3/2}) that can also be implemented in parallel with Õ(√m) depth.

Cite as

Gramoz Goranci, Monika Henzinger, Harald Räcke, Sushant Sachdeva, and A. R. Sricharan. Electrical Flows for Polylogarithmic Competitive Oblivious Routing. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 55:1-55:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{goranci_et_al:LIPIcs.ITCS.2024.55,
  author =	{Goranci, Gramoz and Henzinger, Monika and R\"{a}cke, Harald and Sachdeva, Sushant and Sricharan, A. R.},
  title =	{{Electrical Flows for Polylogarithmic Competitive Oblivious Routing}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{55:1--55:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.55},
  URN =		{urn:nbn:de:0030-drops-195830},
  doi =		{10.4230/LIPIcs.ITCS.2024.55},
  annote =	{Keywords: oblivious routing, electrical flows}
}
Document
Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs

Authors: Monika Henzinger, Ami Paz, and A. R. Sricharan

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
A dynamic graph algorithm is a data structure that answers queries about a property of the current graph while supporting graph modifications such as edge insertions and deletions. Prior work has shown strong conditional lower bounds for general dynamic graphs, yet graph families that arise in practice often exhibit structural properties that the existing lower bound constructions do not possess. We study three specific graph families that are ubiquitous, namely constant-degree graphs, power-law graphs, and expander graphs, and give the first conditional lower bounds for them. Our results show that even when restricting our attention to one of these graph classes, any algorithm for fundamental graph problems such as distance computation or approximation or maximum matching, cannot simultaneously achieve a sub-polynomial update time and query time. For example, we show that the same lower bounds as for general graphs hold for maximum matching and (s,t)-distance in constant-degree graphs, power-law graphs or expanders. Namely, in an m-edge graph, there exists no dynamic algorithms with both O(m^{1/2 - ε}) update time and O(m^{1 -ε}) query time, for any small ε > 0. Note that for (s,t)-distance the trivial dynamic algorithm achieves an almost matching upper bound of constant update time and O(m) query time. We prove similar bounds for the other graph families and for other fundamental problems such as densest subgraph detection and perfect matching.

Cite as

Monika Henzinger, Ami Paz, and A. R. Sricharan. Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 65:1-65:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2022.65,
  author =	{Henzinger, Monika and Paz, Ami and Sricharan, A. R.},
  title =	{{Fine-Grained Complexity Lower Bounds for Families of Dynamic Graphs}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{65:1--65:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.65},
  URN =		{urn:nbn:de:0030-drops-170035},
  doi =		{10.4230/LIPIcs.ESA.2022.65},
  annote =	{Keywords: Dynamic graph algorithms, Expander graphs, Power-law graphs}
}
Document
APPROX
On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources

Authors: Umang Bhaskar, A. R. Sricharan, and Rohit Vaish

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We study the fair allocation of undesirable indivisible items, or chores. While the case of desirable indivisible items (or goods) is extensively studied, with many results known for different notions of fairness, less is known about the fair division of chores. We study envy-free allocation of chores and make three contributions. First, we show that determining the existence of an envy-free allocation is NP-complete even in the simple case when agents have binary additive valuations. Second, we provide a polynomial-time algorithm for computing an allocation that satisfies envy-freeness up to one chore (EF1), correcting a claim in the existing literature. A modification of our algorithm can be used to compute an EF1 allocation for doubly monotone instances (where each agent can partition the set of items into objective goods and objective chores). Our third result applies to a mixed resources model consisting of indivisible items and a divisible, undesirable heterogeneous resource (i.e., a bad cake). We show that there always exists an allocation that satisfies envy-freeness for mixed resources (EFM) in this setting, complementing a recent result of Bei et al. [Bei et al., 2021] for indivisible goods and divisible cake.

Cite as

Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhaskar_et_al:LIPIcs.APPROX/RANDOM.2021.1,
  author =	{Bhaskar, Umang and Sricharan, A. R. and Vaish, Rohit},
  title =	{{On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.1},
  URN =		{urn:nbn:de:0030-drops-146944},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.1},
  annote =	{Keywords: Fair Division, Indivisible Chores, Approximate Envy-Freeness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail