Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

A framework consists of an undirected graph G and a matroid M whose elements correspond to the vertices of G. Recently, Fomin et al. [SODA 2023] and Eiben et al. [ArXiV 2023] developed parameterized algorithms for computing paths of rank k in frameworks. More precisely, for vertices s and t of G, and an integer k, they gave FPT algorithms parameterized by k deciding whether there is an (s,t)-path in G whose vertex set contains a subset of elements of M of rank k. These algorithms are based on Schwartz-Zippel lemma for polynomial identity testing and thus are randomized, and therefore the existence of a deterministic FPT algorithm for this problem remains open.
We present the first deterministic FPT algorithm that solves the problem in frameworks whose underlying graph G is planar. While the running time of our algorithm is worse than the running times of the recent randomized algorithms, our algorithm works on more general classes of matroids. In particular, this is the first FPT algorithm for the case when matroid M is represented over rationals.
Our main technical contribution is the nontrivial adaptation of the classic irrelevant vertex technique to frameworks to reduce the given instance to one of bounded treewidth. This allows us to employ the toolbox of representative sets to design a dynamic programming procedure solving the problem efficiently on instances of bounded treewidth.

Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Giannos Stamoulis. Computing Paths of Large Rank in Planar Frameworks Deterministically. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 32:1-32:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ISAAC.2023.32, author = {Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Stamoulis, Giannos}, title = {{Computing Paths of Large Rank in Planar Frameworks Deterministically}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {32:1--32:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.32}, URN = {urn:nbn:de:0030-drops-193341}, doi = {10.4230/LIPIcs.ISAAC.2023.32}, annote = {Keywords: Planar graph, longest path, linear matroid, irrelevant vertex} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)

We introduce a novel model-theoretic framework inspired from graph modification and based on the interplay between model theory and algorithmic graph minors. The core of our framework is a new compound logic operating with two types of sentences, expressing graph modification: the modulator sentence, defining some property of the modified part of the graph, and the target sentence, defining some property of the resulting graph. In our framework, modulator sentences are in counting monadic second-order logic (CMSOL) and have models of bounded treewidth, while target sentences express first-order logic (FOL) properties along with minor-exclusion. Our logic captures problems that are not definable in first-order logic and, moreover, may have instances of unbounded treewidth. Also, it permits the modeling of wide families of problems involving vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth), multistage modifications, and various cut problems. Our main result is that, for this compound logic, model-checking can be done in quadratic time. All derived algorithms are constructive and this, as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem instances of unbounded treewidth, for which Courcelle’s theorem does not apply.

Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Compound Logics for Modification Problems. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 61:1-61:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ICALP.2023.61, author = {Fomin, Fedor V. and Golovach, Petr A. and Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.}, title = {{Compound Logics for Modification Problems}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {61:1--61:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.61}, URN = {urn:nbn:de:0030-drops-181137}, doi = {10.4230/LIPIcs.ICALP.2023.61}, annote = {Keywords: Algorithmic meta-theorems, Graph modification problems, Model-checking, Graph minors, First-order logic, Monadic second-order logic, Flat Wall theorem, Irrelevant vertex technique} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)

Let G be a minor-closed graph class and let G be an n-vertex graph. We say that G is a k-apex of G if G contains a set S of at most k vertices such that G⧵S belongs to G. Our first result is an algorithm that decides whether G is a k-apex of G in time 2^poly(k)⋅n². This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022], whose running time was 2^poly(k)⋅n³. The elimination distance of G to G, denoted by ed_G(G), is the minimum number of rounds required to reduce each connected component of G to a graph in G by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] proved the existence of an FPT-algorithm, with parameter k, to decide whether ed_G(G) ≤ k. This algorithm is based on the computability of the minor-obstructions and its dependence on k is not explicit. We extend the techniques used in the first algorithm to decide whether ed_G(G) ≤ k in time 2^{2^{2^poly(k)}}⋅n². This is the first algorithm for this problem with an explicit parametric dependence in k. In the special case where G excludes some apex-graph as a minor, we give two alternative algorithms, one running in time 2^{2^O(k²log k)}⋅n² and one running in time 2^{poly(k)}⋅n³. As a stepping stone for these algorithms, we provide an algorithm that decides whether ed_G(G) ≤ k in time 2^O(tw⋅ k + tw log tw)⋅n, where tw is the treewidth of G. This algorithm combines the dynamic programming framework of Reidl, Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only the empty graph (i.e., for treedepth) with the representative-based techniques introduced by Baste, Sau, and Thilikos [SODA 2020]. In all the algorithmic complexities above, poly is a polynomial function whose degree depends on G, while the hidden constants also depend on G. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs E_k(G) = {G ∣ ed_G(G) ≤ k}.

Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{morelle_et_al:LIPIcs.ICALP.2023.93, author = {Morelle, Laure and Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.}, title = {{Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {93:1--93:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.93}, URN = {urn:nbn:de:0030-drops-181458}, doi = {10.4230/LIPIcs.ICALP.2023.93}, annote = {Keywords: Graph minors, Parameterized algorithms, Graph modification problems, Vertex deletion, Elimination distance, Irrelevant vertex technique, Flat Wall Theorem, Obstructions} }

Document

**Published in:** LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

In general, a graph modification problem is defined by a graph modification operation ⊠ and a target graph property 𝒫. Typically, the modification operation ⊠ may be vertex removal, edge removal, edge contraction, or edge addition and the question is, given a graph G and an integer k, whether it is possible to transform G to a graph in 𝒫 after applying k times the operation ⊠ on G. This problem has been extensively studied for particilar instantiations of ⊠ and 𝒫. In this paper we consider the general property 𝒫_ϕ of being planar and, moreover, being a model of some First-Order Logic sentence ϕ (an FOL-sentence). We call the corresponding meta-problem Graph ⊠-Modification to Planarity and ϕ and prove the following algorithmic meta-theorem: there exists a function f: ℕ² → ℕ such that, for every ⊠ and every FOL sentence ϕ, the Graph ⊠-Modification to Planarity and ϕ is solvable in f(k,|ϕ|)⋅n² time. The proof constitutes a hybrid of two different classic techniques in graph algorithms. The first is the irrelevant vertex technique that is typically used in the context of Graph Minors and deals with properties such as planarity or surface-embeddability (that are not FOL-expressible) and the second is the use of Gaifman’s Locality Theorem that is the theoretical base for the meta-algorithmic study of FOL-expressible problems.

Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 51:1-51:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2020.51, author = {Fomin, Fedor V. and Golovach, Petr A. and Stamoulis, Giannos and Thilikos, Dimitrios M.}, title = {{An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL}}, booktitle = {28th Annual European Symposium on Algorithms (ESA 2020)}, pages = {51:1--51:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-162-7}, ISSN = {1868-8969}, year = {2020}, volume = {173}, editor = {Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.51}, URN = {urn:nbn:de:0030-drops-129172}, doi = {10.4230/LIPIcs.ESA.2020.51}, annote = {Keywords: Graph modification Problems, Algorithmic meta-theorems, First Order Logic, Irrelevant vertex technique, Planar graphs, Surface embeddable graphs} }

Document

Track A: Algorithms, Complexity and Games

**Published in:** LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

Let G be a graph class. We say that a graph G is a k-apex of G if G contains a set S of at most k vertices such that G⧵S belongs to G. We prove that if G is minor-closed, then there is an algorithm that either returns a set S certifying that G is a k-apex of G or reports that such a set does not exist, in 2^{poly(k)}n³ time. Here poly is a polynomial function whose degree depends on the maximum size of a minor-obstruction of G, i.e., the minor-minimal set of graphs not belonging to G. In the special case where G excludes some apex graph as a minor, we give an alternative algorithm running in 2^{poly(k)}n² time.

Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{sau_et_al:LIPIcs.ICALP.2020.95, author = {Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.}, title = {{An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {95:1--95:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.95}, URN = {urn:nbn:de:0030-drops-125027}, doi = {10.4230/LIPIcs.ICALP.2020.95}, annote = {Keywords: Graph modification problems, irrelevant vertex technique, graph minors, parameterized algorithms} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail