Search Results

Documents authored by Stefański, Rafał


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Function Spaces for Orbit-Finite Sets

Authors: Mikołaj Bojańczyk, Lê Thành Dũng (Tito) Nguyễn, and Rafał Stefański

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Orbit-finite sets are a generalisation of finite sets, and as such support many operations allowed for finite sets, such as pairing, quotienting, or taking subsets. However, they do not support function spaces, i.e. if X and Y are orbit-finite sets, then the space of finitely supported functions from X to Y is not orbit-finite. We propose a solution to this problem inspired by linear logic.

Cite as

Mikołaj Bojańczyk, Lê Thành Dũng (Tito) Nguyễn, and Rafał Stefański. Function Spaces for Orbit-Finite Sets. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 130:1-130:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.ICALP.2024.130,
  author =	{Boja\'{n}czyk, Miko{\l}aj and Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and Stefa\'{n}ski, Rafa{\l}},
  title =	{{Function Spaces for Orbit-Finite Sets}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{130:1--130:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.130},
  URN =		{urn:nbn:de:0030-drops-202730},
  doi =		{10.4230/LIPIcs.ICALP.2024.130},
  annote =	{Keywords: Orbit-finite sets, automata, linear types, game semantics}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Single-Use Automata and Transducers for Infinite Alphabets

Authors: Mikołaj Bojańczyk and Rafał Stefański

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Our starting point are register automata for data words, in the style of Kaminski and Francez. We study the effects of the single-use restriction, which says that a register is emptied immediately after being used. We show that under the single-use restriction, the theory of automata for data words becomes much more robust. The main results are: (a) five different machine models are equivalent as language acceptors, including one-way and two-way single-use register automata; (b) one can recover some of the algebraic theory of languages over finite alphabets, including a version of the Krohn-Rhodes Theorem; (c) there is also a robust theory of transducers, with four equivalent models, including two-way single use transducers and a variant of streaming string transducers for data words. These results are in contrast with automata for data words without the single-use restriction, where essentially all models are pairwise non-equivalent.

Cite as

Mikołaj Bojańczyk and Rafał Stefański. Single-Use Automata and Transducers for Infinite Alphabets. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 113:1-113:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bojanczyk_et_al:LIPIcs.ICALP.2020.113,
  author =	{Boja\'{n}czyk, Miko{\l}aj and Stefa\'{n}ski, Rafa{\l}},
  title =	{{Single-Use Automata and Transducers for Infinite Alphabets}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{113:1--113:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.113},
  URN =		{urn:nbn:de:0030-drops-125200},
  doi =		{10.4230/LIPIcs.ICALP.2020.113},
  annote =	{Keywords: Automata, semigroups, data words, orbit-finite sets}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail