Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)
Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 47:1-47:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{sterling_et_al:LIPIcs.CSL.2024.47,
author = {Sterling, Jonathan and Gratzer, Daniel and Birkedal, Lars},
title = {{Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics}},
booktitle = {32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
pages = {47:1--47:21},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-310-2},
ISSN = {1868-8969},
year = {2024},
volume = {288},
editor = {Murano, Aniello and Silva, Alexandra},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.47},
URN = {urn:nbn:de:0030-drops-196901},
doi = {10.4230/LIPIcs.CSL.2024.47},
annote = {Keywords: univalent foundations, homotopy type theory, impredicative encodings, synthetic guarded domain theory, guarded recursion, higher-order store, reference types}
}
Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)
Jonathan Sterling and Robert Harper. Sheaf Semantics of Termination-Insensitive Noninterference. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{sterling_et_al:LIPIcs.FSCD.2022.5,
author = {Sterling, Jonathan and Harper, Robert},
title = {{Sheaf Semantics of Termination-Insensitive Noninterference}},
booktitle = {7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
pages = {5:1--5:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-233-4},
ISSN = {1868-8969},
year = {2022},
volume = {228},
editor = {Felty, Amy P.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.5},
URN = {urn:nbn:de:0030-drops-162869},
doi = {10.4230/LIPIcs.FSCD.2022.5},
annote = {Keywords: information flow, noninterference, denotational semantics, phase distinction, Artin gluing, modal type theory, topos theory, synthetic domain theory, synthetic Tait computability}
}
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31,
author = {Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel},
title = {{Cubical Syntax for Reflection-Free Extensional Equality}},
booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
pages = {31:1--31:25},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-107-8},
ISSN = {1868-8969},
year = {2019},
volume = {131},
editor = {Geuvers, Herman},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31},
URN = {urn:nbn:de:0030-drops-105387},
doi = {10.4230/LIPIcs.FSCD.2019.31},
annote = {Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity}
}