Search Results

Documents authored by Sterling, Jonathan


Document
Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics

Authors: Jonathan Sterling, Daniel Gratzer, and Lars Birkedal

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
We develop a denotational semantics for general reference types in an impredicative version of guarded homotopy type theory, an adaptation of synthetic guarded domain theory to Voevodsky’s univalent foundations. We observe for the first time the profound impact of univalence on the denotational semantics of mutable state. Univalence automatically ensures that all computations are invariant under symmetries of the heap - a bountiful source of program equivalences. In particular, even the most simplistic univalent model enjoys many new equations that do not hold when the same constructions are carried out in the universes of traditional set-level (extensional) type theory.

Cite as

Jonathan Sterling, Daniel Gratzer, and Lars Birkedal. Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 47:1-47:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.CSL.2024.47,
  author =	{Sterling, Jonathan and Gratzer, Daniel and Birkedal, Lars},
  title =	{{Towards Univalent Reference Types: The Impact of Univalence on Denotational Semantics}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{47:1--47:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.47},
  URN =		{urn:nbn:de:0030-drops-196901},
  doi =		{10.4230/LIPIcs.CSL.2024.47},
  annote =	{Keywords: univalent foundations, homotopy type theory, impredicative encodings, synthetic guarded domain theory, guarded recursion, higher-order store, reference types}
}
Document
Sheaf Semantics of Termination-Insensitive Noninterference

Authors: Jonathan Sterling and Robert Harper

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
We propose a new sheaf semantics for secure information flow over a space of abstract behaviors, based on synthetic domain theory: security classes are open/closed partitions, types are sheaves, and redaction of sensitive information corresponds to restricting a sheaf to a closed subspace. Our security-aware computational model satisfies termination-insensitive noninterference automatically, and therefore constitutes an intrinsic alternative to state of the art extrinsic/relational models of noninterference. Our semantics is the latest application of Sterling and Harper’s recent re-interpretation of phase distinctions and noninterference in programming languages in terms of Artin gluing and topos-theoretic open/closed modalities. Prior applications include parametricity for ML modules, the proof of normalization for cubical type theory by Sterling and Angiuli, and the cost-aware logical framework of Niu et al. In this paper we employ the phase distinction perspective twice: first to reconstruct the syntax and semantics of secure information flow as a lattice of phase distinctions between "higher" and "lower" security, and second to verify the computational adequacy of our sheaf semantics with respect to a version of Abadi et al.’s dependency core calculus to which we have added a construct for declassifying termination channels.

Cite as

Jonathan Sterling and Robert Harper. Sheaf Semantics of Termination-Insensitive Noninterference. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2022.5,
  author =	{Sterling, Jonathan and Harper, Robert},
  title =	{{Sheaf Semantics of Termination-Insensitive Noninterference}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.5},
  URN =		{urn:nbn:de:0030-drops-162869},
  doi =		{10.4230/LIPIcs.FSCD.2022.5},
  annote =	{Keywords: information flow, noninterference, denotational semantics, phase distinction, Artin gluing, modal type theory, topos theory, synthetic domain theory, synthetic Tait computability}
}
Document
Cubical Syntax for Reflection-Free Extensional Equality

Authors: Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We contribute XTT, a cubical reconstruction of Observational Type Theory [Altenkirch et al., 2007] which extends Martin-Löf’s intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel extension of the logical families or categorical gluing argument inspired by Coquand and Shulman [Coquand, 2018; Shulman, 2015]: every closed element of boolean type is derivably equal to either true or false.

Cite as

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31,
  author =	{Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel},
  title =	{{Cubical Syntax for Reflection-Free Extensional Equality}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31},
  URN =		{urn:nbn:de:0030-drops-105387},
  doi =		{10.4230/LIPIcs.FSCD.2019.31},
  annote =	{Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail