Search Results

Documents authored by Stewart, James


Document
RANDOM
Fast Mixing via Polymers for Random Graphs with Unbounded Degree

Authors: Andreas Galanis, Leslie Ann Goldberg, and James Stewart

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
The polymer model framework is a classical tool from statistical mechanics that has recently been used to obtain approximation algorithms for spin systems on classes of bounded-degree graphs; examples include the ferromagnetic Potts model on expanders and on the grid. One of the key ingredients in the analysis of polymer models is controlling the growth rate of the number of polymers, which has been typically achieved so far by invoking the bounded-degree assumption. Nevertheless, this assumption is often restrictive and obstructs the applicability of the method to more general graphs. For example, sparse random graphs typically have bounded average degree and good expansion properties, but they include vertices with unbounded degree, and therefore are excluded from the current polymer-model framework. We develop a less restrictive framework for polymer models that relaxes the standard bounded-degree assumption, by reworking the relevant polymer models from the edge perspective. The edge perspective allows us to bound the growth rate of the number of polymers in terms of the total degree of polymers, which in turn can be related more easily to the expansion properties of the underlying graph. To apply our methods, we consider random graphs with unbounded degrees from a fixed degree sequence (with minimum degree at least 3) and obtain approximation algorithms for the ferromagnetic Potts model, which is a standard benchmark for polymer models. Our techniques also extend to more general spin systems.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Mixing via Polymers for Random Graphs with Unbounded Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 36:1-36:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.APPROX/RANDOM.2021.36,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Stewart, James},
  title =	{{Fast Mixing via Polymers for Random Graphs with Unbounded Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{36:1--36:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.36},
  URN =		{urn:nbn:de:0030-drops-147291},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.36},
  annote =	{Keywords: Markov chains, approximate counting, Potts model, expander graphs, random graphs}
}
Document
Fast Algorithms for General Spin Systems on Bipartite Expanders

Authors: Andreas Galanis, Leslie Ann Goldberg, and James Stewart

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
A spin system is a framework in which the vertices of a graph are assigned spins from a finite set. The interactions between neighbouring spins give rise to weights, so a spin assignment can also be viewed as a weighted graph homomorphism. The problem of approximating the partition function (the aggregate weight of spin assignments) or of sampling from the resulting probability distribution is typically intractable for general graphs. In this work, we consider arbitrary spin systems on bipartite expander Δ-regular graphs, including the canonical class of bipartite random Δ-regular graphs. We develop fast approximate sampling and counting algorithms for general spin systems whenever the degree and the spectral gap of the graph are sufficiently large. Our approach generalises the techniques of Jenssen et al. and Chen et al. by showing that typical configurations on bipartite expanders correspond to "bicliques" of the spin system; then, using suitable polymer models, we show how to sample such configurations and approximate the partition function in Õ(n²) time, where n is the size of the graph.

Cite as

Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast Algorithms for General Spin Systems on Bipartite Expanders. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{galanis_et_al:LIPIcs.MFCS.2020.37,
  author =	{Galanis, Andreas and Goldberg, Leslie Ann and Stewart, James},
  title =	{{Fast Algorithms for General Spin Systems on Bipartite Expanders}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.37},
  URN =		{urn:nbn:de:0030-drops-127049},
  doi =		{10.4230/LIPIcs.MFCS.2020.37},
  annote =	{Keywords: bipartite expanders, approximate counting, spin systems}
}
Document
RANDOM
Fast Algorithms at Low Temperatures via Markov Chains

Authors: Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric Vigoda

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
For spin systems, such as the hard-core model on independent sets weighted by fugacity lambda>0, efficient algorithms for the associated approximate counting/sampling problems typically apply in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures. Their method is based on using the cluster expansion to obtain a complex zero-free region for the partition function of a polymer model, and then approximating this partition function using the polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for abstract polymer models, and present an elementary proof of rapid mixing of this new chain under sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms with running time O(n log n) for the Potts model and O(n^2 log n) for the hard-core model, in contrast to typical running times of n^{O(log Delta)} for algorithms based on Barvinok’s polynomial interpolation method on graphs of maximum degree Delta. In addition, our approach via our polymer model Markov chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts models with standard Markov chain comparison tools to obtain polynomial mixing time for the usual spin system Glauber dynamics restricted to even and odd or "red" dominant portions of the respective state spaces.

Cite as

Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric Vigoda. Fast Algorithms at Low Temperatures via Markov Chains. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 41:1-41:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX-RANDOM.2019.41,
  author =	{Chen, Zongchen and Galanis, Andreas and Goldberg, Leslie Ann and Perkins, Will and Stewart, James and Vigoda, Eric},
  title =	{{Fast Algorithms at Low Temperatures via Markov Chains}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{41:1--41:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.41},
  URN =		{urn:nbn:de:0030-drops-112560},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.41},
  annote =	{Keywords: Markov chains, approximate counting, Potts model, hard-core model, expander graphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail