Search Results

Documents authored by Straszyński, Juliusz


Document
Linear-Time Computation of Shortest Covers of All Rotations of a String

Authors: Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
We show that lengths of shortest covers of all rotations of a length-n string over an integer alphabet can be computed in 𝒪(n) time in the word-RAM model, thus improving an 𝒪(n log n)-time algorithm from Crochemore et al. (Theor. Comput. Sci., 2021). Similarly as Crochemore et al., we use a relation of covers of rotations of a string S to seeds and squares in S³. The crucial parameter of a string S is the number ξ(S) of primitive covers of all rotations of S. We show first that the time complexity of the algorithm from Crochemore et al. can be slightly improved which results in time complexity Θ(ξ(S)). However, we also show that in the worst case ξ(S) is Ω(|S|log |S|). This is the main difficulty in obtaining a linear time algorithm. We overcome it and obtain yet another application of runs in strings.

Cite as

Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Linear-Time Computation of Shortest Covers of All Rotations of a String. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{crochemore_et_al:LIPIcs.CPM.2022.22,
  author =	{Crochemore, Maxime and Iliopoulos, Costas S. and Radoszewski, Jakub and Rytter, Wojciech and Straszy\'{n}ski, Juliusz and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Linear-Time Computation of Shortest Covers of All Rotations of a String}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.22},
  URN =		{urn:nbn:de:0030-drops-161495},
  doi =		{10.4230/LIPIcs.CPM.2022.22},
  annote =	{Keywords: cover, quasiperiod, cyclic rotation, seed, run}
}
Document
Rectangular Tile Covers of 2D-Strings

Authors: Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
We consider tile covers of 2D-strings which are a generalization of periodicity of 1D-strings. We say that a 2D-string A is a tile cover of a 2D-string S if S can be decomposed into non-overlapping 2D-strings, each of them equal to A or to A^T, where A^T is the transpose of A. We show that all tile covers of a 2D-string of size N can be computed in 𝒪(N^{1+ε}) time for any ε > 0. We also show a linear-time algorithm for computing all 1D-strings being tile covers of a 2D-string.

Cite as

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Rectangular Tile Covers of 2D-Strings. In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{radoszewski_et_al:LIPIcs.CPM.2022.23,
  author =	{Radoszewski, Jakub and Rytter, Wojciech and Straszy\'{n}ski, Juliusz and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Rectangular Tile Covers of 2D-Strings}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.23},
  URN =		{urn:nbn:de:0030-drops-161508},
  doi =		{10.4230/LIPIcs.CPM.2022.23},
  annote =	{Keywords: tile cover, periodicity, efficient algorithm}
}
Document
Hardness of Detecting Abelian and Additive Square Factors in Strings

Authors: Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We prove 3SUM-hardness (no strongly subquadratic-time algorithm, assuming the 3SUM conjecture) of several problems related to finding Abelian square and additive square factors in a string. In particular, we conclude conditional optimality of the state-of-the-art algorithms for finding such factors. Overall, we show 3SUM-hardness of (a) detecting an Abelian square factor of an odd half-length, (b) computing centers of all Abelian square factors, (c) detecting an additive square factor in a length-n string of integers of magnitude n^{𝒪(1)}, and (d) a problem of computing a double 3-term arithmetic progression (i.e., finding indices i ≠ j such that (x_i+x_j)/2 = x_{(i+j)/2}) in a sequence of integers x₁,… ,x_n of magnitude n^{𝒪(1)}. Problem (d) is essentially a convolution version of the AVERAGE problem that was proposed in a manuscript of Erickson. We obtain a conditional lower bound for it with the aid of techniques recently developed by Dudek et al. [STOC 2020]. Problem (d) immediately reduces to problem (c) and is a step in reductions to problems (a) and (b). In conditional lower bounds for problems (a) and (b) we apply an encoding of Amir et al. [ICALP 2014] and extend it using several string gadgets that include arbitrarily long Abelian-square-free strings. Our reductions also imply conditional lower bounds for detecting Abelian squares in strings over a constant-sized alphabet. We also show a subquadratic upper bound in this case, applying a result of Chan and Lewenstein [STOC 2015].

Cite as

Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Hardness of Detecting Abelian and Additive Square Factors in Strings. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 77:1-77:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{radoszewski_et_al:LIPIcs.ESA.2021.77,
  author =	{Radoszewski, Jakub and Rytter, Wojciech and Straszy\'{n}ski, Juliusz and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Hardness of Detecting Abelian and Additive Square Factors in Strings}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{77:1--77:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.77},
  URN =		{urn:nbn:de:0030-drops-146581},
  doi =		{10.4230/LIPIcs.ESA.2021.77},
  annote =	{Keywords: Abelian square, additive square, 3SUM problem}
}
Document
Efficient Computation of 2-Covers of a String

Authors: Jakub Radoszewski and Juliusz Straszyński

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
Quasiperiodicity is a generalization of periodicity that has been researched for almost 30 years. The notion of cover is the classic variant of quasiperiodicity. A cover of a text T is a string whose occurrences in T cover all positions of T. There are several algorithms computing covers of a text in linear time. In this paper we consider a natural extension of cover. For a text T, we call a pair of strings a 2-cover if they have the same length and their occurrences cover the text T. We give an algorithm that computes all 2-covers of a string of length n in 𝒪(n log n log log n + output) expected time or 𝒪(n log n log² log n / log log log n + output) worst-case time, where output is the size of output. If (X,Y) is a 2-cover of T, then either X is a prefix and Y is a suffix of T, in which case we call (X,Y) a ps-cover, or one of X, Y is a border (that is, both a prefix and a suffix) of T, and then we call (X,Y) a b-cover. A string of length n has up to n ps-covers; we show an algorithm that computes all of them in 𝒪(n log log n) expected time or 𝒪(n log² log n / log log log n) worst-case time. A string of length n can have Θ(n²) non-trivial b-covers; our algorithm can report one b-cover per length (if it exists) or all shortest b-covers in 𝒪(n log n log log n) expected time or 𝒪(n log n log² log n / log log log n) worst-case time. All our algorithms use linear space. The problem in scope can be generalized to λ > 2 equal-length strings, resulting in the notion of λ-cover. Cole et al. (2005) showed that the λ-cover problem is NP-complete. Our algorithms generalize to λ-covers, with (the first component of) the algorithm’s complexity multiplied by n^{λ-2}.

Cite as

Jakub Radoszewski and Juliusz Straszyński. Efficient Computation of 2-Covers of a String. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 77:1-77:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{radoszewski_et_al:LIPIcs.ESA.2020.77,
  author =	{Radoszewski, Jakub and Straszy\'{n}ski, Juliusz},
  title =	{{Efficient Computation of 2-Covers of a String}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{77:1--77:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.77},
  URN =		{urn:nbn:de:0030-drops-129432},
  doi =		{10.4230/LIPIcs.ESA.2020.77},
  annote =	{Keywords: quasiperiodicity, cover of a string, 2-cover, lambda-cover}
}
Document
Counting Distinct Patterns in Internal Dictionary Matching

Authors: Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
We consider the problem of preprocessing a text T of length n and a dictionary 𝒟 in order to be able to efficiently answer queries CountDistinct(i,j), that is, given i and j return the number of patterns from 𝒟 that occur in the fragment T[i..j]. The dictionary is internal in the sense that each pattern in 𝒟 is given as a fragment of T. This way, the dictionary takes space proportional to the number of patterns d=|𝒟| rather than their total length, which could be Θ(n⋅ d). An 𝒪̃(n+d)-size data structure that answers CountDistinct(i,j) queries 𝒪(log n)-approximately in 𝒪̃(1) time was recently proposed in a work that introduced internal dictionary matching [ISAAC 2019]. Here we present an 𝒪̃(n+d)-size data structure that answers CountDistinct(i,j) queries 2-approximately in 𝒪̃(1) time. Using range queries, for any m, we give an 𝒪̃(min(nd/m,n²/m²)+d)-size data structure that answers CountDistinct(i,j) queries exactly in 𝒪̃(m) time. We also consider the special case when the dictionary consists of all square factors of the string. We design an 𝒪(n log² n)-size data structure that allows us to count distinct squares in a text fragment T[i..j] in 𝒪(log n) time.

Cite as

Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Counting Distinct Patterns in Internal Dictionary Matching. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.CPM.2020.8,
  author =	{Charalampopoulos, Panagiotis and Kociumaka, Tomasz and Mohamed, Manal and Radoszewski, Jakub and Rytter, Wojciech and Straszy\'{n}ski, Juliusz and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Counting Distinct Patterns in Internal Dictionary Matching}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{8:1--8:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.8},
  URN =		{urn:nbn:de:0030-drops-121336},
  doi =		{10.4230/LIPIcs.CPM.2020.8},
  annote =	{Keywords: dictionary matching, internal pattern matching, squares}
}
Document
Quasi-Linear-Time Algorithm for Longest Common Circular Factor

Authors: Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 128, 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019)


Abstract
We introduce the Longest Common Circular Factor (LCCF) problem in which, given strings S and T of length at most n, we are to compute the longest factor of S whose cyclic shift occurs as a factor of T. It is a new similarity measure, an extension of the classic Longest Common Factor. We show how to solve the LCCF problem in O(n log^4 n) time using O(n log^2 n) space.

Cite as

Mai Alzamel, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Quasi-Linear-Time Algorithm for Longest Common Circular Factor. In 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 128, pp. 25:1-25:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alzamel_et_al:LIPIcs.CPM.2019.25,
  author =	{Alzamel, Mai and Crochemore, Maxime and Iliopoulos, Costas S. and Kociumaka, Tomasz and Radoszewski, Jakub and Rytter, Wojciech and Straszy\'{n}ski, Juliusz and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Quasi-Linear-Time Algorithm for Longest Common Circular Factor}},
  booktitle =	{30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-103-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{128},
  editor =	{Pisanti, Nadia and P. Pissis, Solon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2019.25},
  URN =		{urn:nbn:de:0030-drops-104961},
  doi =		{10.4230/LIPIcs.CPM.2019.25},
  annote =	{Keywords: longest common factor, circular pattern matching, internal pattern matching, intersection of hyperrectangles}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail