Search Results

Documents authored by Suchanek, Fabian


Document
Invited Paper
Combining Embeddings and Rules for Fact Prediction (Invited Paper)

Authors: Armand Boschin, Nitisha Jain, Gurami Keretchashvili, and Fabian Suchanek

Published in: OASIcs, Volume 99, International Research School in Artificial Intelligence in Bergen (AIB 2022)


Abstract
Knowledge bases are typically incomplete, meaning that they are missing information that we would expect to be there. Recent years have seen two main approaches to guess missing facts: Rule Mining and Knowledge Graph Embeddings. The first approach is symbolic, and finds rules such as "If two people are married, they most likely live in the same city". These rules can then be used to predict missing statements. Knowledge Graph Embeddings, on the other hand, are trained to predict missing facts for a knowledge base by mapping entities to a vector space. Each of these approaches has their strengths and weaknesses, and this article provides a survey of neuro-symbolic works that combine embeddings and rule mining approaches for fact prediction.

Cite as

Armand Boschin, Nitisha Jain, Gurami Keretchashvili, and Fabian Suchanek. Combining Embeddings and Rules for Fact Prediction (Invited Paper). In International Research School in Artificial Intelligence in Bergen (AIB 2022). Open Access Series in Informatics (OASIcs), Volume 99, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{boschin_et_al:OASIcs.AIB.2022.4,
  author =	{Boschin, Armand and Jain, Nitisha and Keretchashvili, Gurami and Suchanek, Fabian},
  title =	{{Combining Embeddings and Rules for Fact Prediction}},
  booktitle =	{International Research School in Artificial Intelligence in Bergen (AIB 2022)},
  pages =	{4:1--4:30},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-228-0},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{99},
  editor =	{Bourgaux, Camille and Ozaki, Ana and Pe\~{n}aloza, Rafael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.AIB.2022.4},
  URN =		{urn:nbn:de:0030-drops-160021},
  doi =		{10.4230/OASIcs.AIB.2022.4},
  annote =	{Keywords: Rule Mining, Embeddings, Knowledge Bases, Deep Learning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail