Search Results

Documents authored by Szabo, Daniel P.


Document
Multiway Cuts with a Choice of Representatives

Authors: Kristóf Bérczi, Tamás Király, and Daniel P. Szabo

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Multiway Cut problem, we are given an undirected graph with nonnegative edge weights and a subset of k terminals, and the goal is to determine a set of edges of minimum total weight whose removal disconnects each terminal from the rest. The problem is APX-hard for k ≥ 3, and an extensive line of research has concentrated on closing the gap between the best upper and lower bounds for approximability and inapproximability, respectively. In this paper, we study several generalizations of Multiway Cut where the terminals can be chosen as representatives from sets of candidates T₁,…,T_q. In this setting, one is allowed to choose these representatives so that the minimum-weight cut separating these sets via their representatives is as small as possible. We distinguish different cases depending on (A) whether the representative of a candidate set has to be separated from the other candidate sets completely or only from the representatives, and (B) whether there is a single representative for each candidate set or the choice of representative is independent for each pair of candidate sets. For fixed q, we give approximation algorithms for each of these problems that match the best known approximation guarantee for Multiway Cut. Our technical contribution is a new extension of the CKR relaxation that preserves approximation guarantees. For general q, we show o(log q)-inapproximability for all cases where the choice of representatives may depend on the pair of candidate sets, as well as for the case where the goal is to separate a fixed node from a single representative from each candidate set. As a positive result, we give a 2-approximation algorithm for the case where we need to choose a single representative from each candidate set. This is a generalization of the (2-2/k)-approximation for k-Cut, and we can solve it by relating the tree case to optimization over a gammoid.

Cite as

Kristóf Bérczi, Tamás Király, and Daniel P. Szabo. Multiway Cuts with a Choice of Representatives. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.MFCS.2024.25,
  author =	{B\'{e}rczi, Krist\'{o}f and Kir\'{a}ly, Tam\'{a}s and Szabo, Daniel P.},
  title =	{{Multiway Cuts with a Choice of Representatives}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.25},
  URN =		{urn:nbn:de:0030-drops-205813},
  doi =		{10.4230/LIPIcs.MFCS.2024.25},
  annote =	{Keywords: Approximation algorithms, Multiway cut, CKR relaxation, Steiner multicut}
}
Document
Bounded Degree Nonnegative Counting CSP

Authors: Jin-Yi Cai and Daniel P. Szabo

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Constraint satisfaction problems (CSP) encompass an enormous variety of computational problems. In particular, all partition functions from statistical physics, such as spin systems, are special cases of counting CSP (#CSP). We prove a complete complexity classification for every counting problem in #CSP with nonnegative valued constraint functions that is valid when every variable occurs a bounded number of times in all constraints. We show that, depending on the set of constraint functions ℱ, every problem in the complexity class #CSP(ℱ) defined by ℱ is either polynomial time computable for all instances without the bounded occurrence restriction, or is #P-hard even when restricted to bounded degree input instances. The constant bound in the degree depends on ℱ. The dichotomy criterion on ℱ is decidable. As a second contribution, we prove a slightly modified but more streamlined decision procedure (from [Jin-Yi Cai et al., 2011]) for tractability. This enables us to fully classify a family of directed weighted graph homomorphism problems. This family contains both P-time tractable problems and #P-hard problems. To our best knowledge, this is the first family of such problems explicitly classified that are not acyclic, thereby the Lovász-goodness criterion of Dyer-Goldberg-Paterson [Martin E. Dyer et al., 2006] cannot be applied.

Cite as

Jin-Yi Cai and Daniel P. Szabo. Bounded Degree Nonnegative Counting CSP. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.MFCS.2022.27,
  author =	{Cai, Jin-Yi and Szabo, Daniel P.},
  title =	{{Bounded Degree Nonnegative Counting CSP}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.27},
  URN =		{urn:nbn:de:0030-drops-168250},
  doi =		{10.4230/LIPIcs.MFCS.2022.27},
  annote =	{Keywords: Computational Counting Complexity, Constraint Satisfaction Problems, Counting CSPs, Complexity Dichotomy, Nonnegative Counting CSP, Graph Homomorphisms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail