Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)
Yakov Babichenko, Inbal Talgam-Cohen, Haifeng Xu, and Konstantin Zabarnyi. Multi-Channel Bayesian Persuasion. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 11:1-11:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{babichenko_et_al:LIPIcs.ITCS.2022.11,
author = {Babichenko, Yakov and Talgam-Cohen, Inbal and Xu, Haifeng and Zabarnyi, Konstantin},
title = {{Multi-Channel Bayesian Persuasion}},
booktitle = {13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
pages = {11:1--11:2},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-217-4},
ISSN = {1868-8969},
year = {2022},
volume = {215},
editor = {Braverman, Mark},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.11},
URN = {urn:nbn:de:0030-drops-156072},
doi = {10.4230/LIPIcs.ITCS.2022.11},
annote = {Keywords: Algorithmic game theory, Bayesian persuasion, Private Bayesian persuasion, Public Bayesian persuasion, Secret sharing, Networks}
}
Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)
Tim Roughgarden, Inbal Talgam-Cohen, and Jan Vondrák. When Are Welfare Guarantees Robust?. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 22:1-22:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
@InProceedings{roughgarden_et_al:LIPIcs.APPROX-RANDOM.2017.22,
author = {Roughgarden, Tim and Talgam-Cohen, Inbal and Vondr\'{a}k, Jan},
title = {{When Are Welfare Guarantees Robust?}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
pages = {22:1--22:23},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-044-6},
ISSN = {1868-8969},
year = {2017},
volume = {81},
editor = {Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.22},
URN = {urn:nbn:de:0030-drops-75714},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2017.22},
annote = {Keywords: Valuation (set) functions, gross substitutes, linearity, approximation}
}
Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)
Uriel Feige, Michal Feldman, and Inbal Talgam-Cohen. Oblivious Rounding and the Integrality Gap. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 8:1-8:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{feige_et_al:LIPIcs.APPROX-RANDOM.2016.8,
author = {Feige, Uriel and Feldman, Michal and Talgam-Cohen, Inbal},
title = {{Oblivious Rounding and the Integrality Gap}},
booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
pages = {8:1--8:23},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-018-7},
ISSN = {1868-8969},
year = {2016},
volume = {60},
editor = {Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.8},
URN = {urn:nbn:de:0030-drops-66319},
doi = {10.4230/LIPIcs.APPROX-RANDOM.2016.8},
annote = {Keywords: Welfare-maximization}
}