Search Results

Documents authored by Tauer, Bjoern


Document
The Complexity of Packing Edge-Disjoint Paths

Authors: Jan Dreier, Janosch Fuchs, Tim A. Hartmann, Philipp Kuinke, Peter Rossmanith, Bjoern Tauer, and Hung-Lung Wang

Published in: LIPIcs, Volume 148, 14th International Symposium on Parameterized and Exact Computation (IPEC 2019)


Abstract
We introduce and study the complexity of Path Packing. Given a graph G and a list of paths, the task is to embed the paths edge-disjoint in G. This generalizes the well known Hamiltonian-Path problem. Since Hamiltonian Path is efficiently solvable for graphs of small treewidth, we study how this result translates to the much more general Path Packing. On the positive side, we give an FPT-algorithm on trees for the number of paths as parameter. Further, we give an XP-algorithm with the combined parameters maximal degree, number of connected components and number of nodes of degree at least three. Surprisingly the latter is an almost tight result by runtime and parameterization. We show an ETH lower bound almost matching our runtime. Moreover, if two of the three values are constant and one is unbounded the problem becomes NP-hard. Further, we study restrictions to the given list of paths. On the positive side, we present an FPT-algorithm parameterized by the sum of the lengths of the paths. Packing paths of length two is polynomial time solvable, while packing paths of length three is NP-hard. Finally, even the spacial case Exact Path Packing where the paths have to cover every edge in G exactly once is already NP-hard for two paths on 4-regular graphs.

Cite as

Jan Dreier, Janosch Fuchs, Tim A. Hartmann, Philipp Kuinke, Peter Rossmanith, Bjoern Tauer, and Hung-Lung Wang. The Complexity of Packing Edge-Disjoint Paths. In 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 148, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.IPEC.2019.10,
  author =	{Dreier, Jan and Fuchs, Janosch and Hartmann, Tim A. and Kuinke, Philipp and Rossmanith, Peter and Tauer, Bjoern and Wang, Hung-Lung},
  title =	{{The Complexity of Packing Edge-Disjoint Paths}},
  booktitle =	{14th International Symposium on Parameterized and Exact Computation (IPEC 2019)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-129-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{148},
  editor =	{Jansen, Bart M. P. and Telle, Jan Arne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2019.10},
  URN =		{urn:nbn:de:0030-drops-114710},
  doi =		{10.4230/LIPIcs.IPEC.2019.10},
  annote =	{Keywords: parameterized complexity, embedding, packing, covering, Hamiltonian path, unary binpacking, path-perfect graphs}
}
Document
Oligopolistic Competitive Packet Routing

Authors: Britta Peis, Bjoern Tauer, Veerle Timmermans, and Laura Vargas Koch

Published in: OASIcs, Volume 65, 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018)


Abstract
Oligopolistic competitive packet routing games model situations in which traffic is routed in discrete units through a network over time. We study a game-theoretic variant of packet routing, where in contrast to classical packet routing, we are lacking a central authority to decide on an oblivious routing protocol. Instead, selfish acting decision makers ("players") control a certain amount of traffic each, which needs to be sent as fast as possible from a player-specific origin to a player-specific destination through a commonly used network. The network is represented by a directed graph, each edge of which being endowed with a transit time, as well as a capacity bounding the number of traffic units entering an edge simultaneously. Additionally, a priority policy on the set of players is publicly known with respect to which conflicts at intersections are resolved. We prove the existence of a pure Nash equilibrium and show that it can be constructed by sequentially computing an integral earliest arrival flow for each player. Moreover, we derive several tight bounds on the price of anarchy and the price of stability in single source games.

Cite as

Britta Peis, Bjoern Tauer, Veerle Timmermans, and Laura Vargas Koch. Oligopolistic Competitive Packet Routing. In 18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018). Open Access Series in Informatics (OASIcs), Volume 65, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{peis_et_al:OASIcs.ATMOS.2018.13,
  author =	{Peis, Britta and Tauer, Bjoern and Timmermans, Veerle and Vargas Koch, Laura},
  title =	{{Oligopolistic Competitive Packet Routing}},
  booktitle =	{18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018)},
  pages =	{13:1--13:22},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-096-5},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{65},
  editor =	{Bornd\"{o}rfer, Ralf and Storandt, Sabine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2018.13},
  URN =		{urn:nbn:de:0030-drops-97186},
  doi =		{10.4230/OASIcs.ATMOS.2018.13},
  annote =	{Keywords: Competitive Packet Routing, Nash Equilibrium, Oligopoly, Efficiency of Equilibria, Priority Policy}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail