Search Results

Documents authored by Urban, Josef


Document
Automated Theorem Proving for Metamath

Authors: Mario Carneiro, Chad E. Brown, and Josef Urban

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Metamath is a proof assistant that keeps surprising outsiders by its combination of a very minimalist design with a large library of advanced results, ranking high on the Freek Wiedijk’s 100 list. In this work, we develop several translations of the Metamath logic and its large set-theoretical library into higher-order and first-order TPTP formats for automated theorem provers (ATPs). We show that state-of-the-art ATPs can prove 68% of the Metamath problems automatically when using the premises that were used in the human-written Metamath proofs. Finally, we add proof reconstruction and premise selection methods and combine the components into the first hammer system for Metamath.

Cite as

Mario Carneiro, Chad E. Brown, and Josef Urban. Automated Theorem Proving for Metamath. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{carneiro_et_al:LIPIcs.ITP.2023.9,
  author =	{Carneiro, Mario and Brown, Chad E. and Urban, Josef},
  title =	{{Automated Theorem Proving for Metamath}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.9},
  URN =		{urn:nbn:de:0030-drops-183846},
  doi =		{10.4230/LIPIcs.ITP.2023.9},
  annote =	{Keywords: Metamath, Automated theorem proving, Interactive theorem proving, Formal proof assistants, proof discovery}
}
Document
MizAR 60 for Mizar 50

Authors: Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically proves about 60% of the Mizar theorems in the hammer setting. We also automatically prove 75% of the Mizar theorems when the automated provers are helped by using only the premises used in the human-written Mizar proofs. We describe the methods and large-scale experiments leading to these results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning modifications, a number of learning-based premise selection methods, and the incremental loop that interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP systems on them. We also present a selection of Mizar problems that were proved automatically.

Cite as

Jan Jakubův, Karel Chvalovský, Zarathustra Goertzel, Cezary Kaliszyk, Mirek Olšák, Bartosz Piotrowski, Stephan Schulz, Martin Suda, and Josef Urban. MizAR 60 for Mizar 50. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jakubuv_et_al:LIPIcs.ITP.2023.19,
  author =	{Jakub\r{u}v, Jan and Chvalovsk\'{y}, Karel and Goertzel, Zarathustra and Kaliszyk, Cezary and Ol\v{s}\'{a}k, Mirek and Piotrowski, Bartosz and Schulz, Stephan and Suda, Martin and Urban, Josef},
  title =	{{MizAR 60 for Mizar 50}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.19},
  URN =		{urn:nbn:de:0030-drops-183942},
  doi =		{10.4230/LIPIcs.ITP.2023.19},
  annote =	{Keywords: Mizar, ENIGMA, Automated Reasoning, Machine Learning}
}
Document
Proofgold: Blockchain for Formal Methods

Authors: Chad E. Brown, Cezary Kaliszyk, Thibault Gauthier, and Josef Urban

Published in: OASIcs, Volume 105, 4th International Workshop on Formal Methods for Blockchains (FMBC 2022)


Abstract
Proofgold is a peer to peer cryptocurrency making use of formal logic. Users can publish theories and then develop a theory by publishing documents with definitions, conjectures and proofs. The blockchain records the theories and their state of development (e.g., which theorems have been proven and when). Two of the main theories are a form of classical set theory (for formalizing mathematics) and an intuitionistic theory of higher-order abstract syntax (for reasoning about syntax with binders). We have also significantly modified the open source Proofgold Core client software to create a faster, more stable and more efficient client, Proofgold Lava. Two important changes are the cryptography code and the database code, and we discuss these improvements. We also discuss how the Proofgold network can be used to support large formalization efforts.

Cite as

Chad E. Brown, Cezary Kaliszyk, Thibault Gauthier, and Josef Urban. Proofgold: Blockchain for Formal Methods. In 4th International Workshop on Formal Methods for Blockchains (FMBC 2022). Open Access Series in Informatics (OASIcs), Volume 105, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{brown_et_al:OASIcs.FMBC.2022.4,
  author =	{Brown, Chad E. and Kaliszyk, Cezary and Gauthier, Thibault and Urban, Josef},
  title =	{{Proofgold: Blockchain for Formal Methods}},
  booktitle =	{4th International Workshop on Formal Methods for Blockchains (FMBC 2022)},
  pages =	{4:1--4:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-250-1},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{105},
  editor =	{Dargaye, Zaynah and Schneidewind, Clara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2022.4},
  URN =		{urn:nbn:de:0030-drops-171851},
  doi =		{10.4230/OASIcs.FMBC.2022.4},
  annote =	{Keywords: Formal logic, Blockchain, Proofgold}
}
Document
The Isabelle ENIGMA

Authors: Zarathustra A. Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepenbrock, and Josef Urban

Published in: LIPIcs, Volume 237, 13th International Conference on Interactive Theorem Proving (ITP 2022)


Abstract
We significantly improve the performance of the E automated theorem prover on the Isabelle Sledgehammer problems by combining learning and theorem proving in several ways. In particular, we develop targeted versions of the ENIGMA guidance for the Isabelle problems, targeted versions of neural premise selection, and targeted strategies for E. The methods are trained in several iterations over hundreds of thousands untyped and typed first-order problems extracted from Isabelle. Our final best single-strategy ENIGMA and premise selection system improves the best previous version of E by 25.3% in 15 seconds, outperforming also all other previous ATP and SMT systems.

Cite as

Zarathustra A. Goertzel, Jan Jakubův, Cezary Kaliszyk, Miroslav Olšák, Jelle Piepenbrock, and Josef Urban. The Isabelle ENIGMA. In 13th International Conference on Interactive Theorem Proving (ITP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 237, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goertzel_et_al:LIPIcs.ITP.2022.16,
  author =	{Goertzel, Zarathustra A. and Jakub\r{u}v, Jan and Kaliszyk, Cezary and Ol\v{s}\'{a}k, Miroslav and Piepenbrock, Jelle and Urban, Josef},
  title =	{{The Isabelle ENIGMA}},
  booktitle =	{13th International Conference on Interactive Theorem Proving (ITP 2022)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-252-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{237},
  editor =	{Andronick, June and de Moura, Leonardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2022.16},
  URN =		{urn:nbn:de:0030-drops-167253},
  doi =		{10.4230/LIPIcs.ITP.2022.16},
  annote =	{Keywords: E Prover, ENIGMA, Premise Selection, Isabelle/Sledgehammer}
}
Document
Short Paper
Hammering Mizar by Learning Clause Guidance (Short Paper)

Authors: Jan Jakubův and Josef Urban

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We describe a very large improvement of existing hammer-style proof automation over large ITP libraries by combining learning and theorem proving. In particular, we have integrated state-of-the-art machine learners into the E automated theorem prover, and developed methods that allow learning and efficient internal guidance of E over the whole Mizar library. The resulting trained system improves the real-time performance of E on the Mizar library by 70% in a single-strategy setting.

Cite as

Jan Jakubův and Josef Urban. Hammering Mizar by Learning Clause Guidance (Short Paper). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 34:1-34:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{jakubuv_et_al:LIPIcs.ITP.2019.34,
  author =	{Jakub\r{u}v, Jan and Urban, Josef},
  title =	{{Hammering Mizar by Learning Clause Guidance}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{34:1--34:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.34},
  URN =		{urn:nbn:de:0030-drops-110898},
  doi =		{10.4230/LIPIcs.ITP.2019.34},
  annote =	{Keywords: Proof automation, ITP hammers, Automated theorem proving, Machine learning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail