Search Results

Documents authored by Vallée, Mathieu


Artifact
Software
GPU algorithm for enumerating weak pseudomanifolds

Authors: Mathieu Vallée


Abstract

Cite as

Mathieu Vallée. GPU algorithm for enumerating weak pseudomanifolds (Software, Source Code and Database). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-22476,
   title = {{GPU algorithm for enumerating weak pseudomanifolds}}, 
   author = {Vall\'{e}e, Mathieu},
   note = {Software, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:ecc6f4940dc55c6a4175e78f2cfa47ccfd3ce009;origin=https://github.com/MVallee1998/GPU_handle;visit=swh:1:snp:07270cf94c6118a0931b7555e77dd33d032ad9f6;anchor=swh:1:rev:720fe13933d5dd7fc88101e2eaa5c05c4ba000e7}{\texttt{swh:1:dir:ecc6f4940dc55c6a4175e78f2cfa47ccfd3ce009}} (visited on 2024-11-28)},
   url = {https://github.com/MVallee1998/GPU_handle},
   doi = {10.4230/artifacts.22476},
}
Document
GPU Algorithm for Enumerating PL Spheres of Picard Number 4: Application to Toric Topology

Authors: Suyoung Choi, Hyeontae Jang, and Mathieu Vallée

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The fundamental theorem for toric geometry states a toric manifold is encoded by a complete non-singular fan, whose combinatorial structure is the one of a PL sphere together with the set of generators of its rays. The wedge operation on a PL sphere increases its dimension without changing its Picard number. The seeds are the PL spheres that are not wedges. A PL sphere is toric colorable if it comes from a complete rational fan. A result of Choi and Park tells us that the set of toric seeds with a fixed Picard number p is finite. In fact, a toric PL sphere needs its facets to be bases of some binary matroids of corank p with neither coloops, nor cocircuits of size 2. We present and use a GPU-friendly and computationally efficient algorithm to enumerate this set of seeds, up to simplicial isomorphism. Explicitly, it allows us to obtain this set of seeds for Picard number 4 which is of main importance in toric topology for the characterization of toric manifolds with small Picard number. This follows the work of Kleinschmidt (1988) and Batyrev (1991) who fully classified toric manifolds with Picard number ≤ 3.

Cite as

Suyoung Choi, Hyeontae Jang, and Mathieu Vallée. GPU Algorithm for Enumerating PL Spheres of Picard Number 4: Application to Toric Topology. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 41:1-41:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{choi_et_al:LIPIcs.SoCG.2024.41,
  author =	{Choi, Suyoung and Jang, Hyeontae and Vall\'{e}e, Mathieu},
  title =	{{GPU Algorithm for Enumerating PL Spheres of Picard Number 4: Application to Toric Topology}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{41:1--41:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.41},
  URN =		{urn:nbn:de:0030-drops-199864},
  doi =		{10.4230/LIPIcs.SoCG.2024.41},
  annote =	{Keywords: PL sphere, simplicial sphere, toric manifold, Picard number, weak pseudo-manifold, characteristic map, binary matroid, parallel computing, GPU programming}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail