Search Results

Documents authored by Vaxès, Yann


Document
Isometric Path Complexity of Graphs

Authors: Dibyayan Chakraborty, Jérémie Chalopin, Florent Foucaud, and Yann Vaxès

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
A set S of isometric paths of a graph G is "v-rooted", where v is a vertex of G, if v is one of the end-vertices of all the isometric paths in S. The isometric path complexity of a graph G, denoted by ipco (G), is the minimum integer k such that there exists a vertex v ∈ V(G) satisfying the following property: the vertices of any isometric path P of G can be covered by k many v-rooted isometric paths. First, we provide an O(n² m)-time algorithm to compute the isometric path complexity of a graph with n vertices and m edges. Then we show that the isometric path complexity remains bounded for graphs in three seemingly unrelated graph classes, namely, hyperbolic graphs, (theta, prism, pyramid)-free graphs, and outerstring graphs. Hyperbolic graphs are extensively studied in Metric Graph Theory. The class of (theta, prism, pyramid)-free graphs are extensively studied in Structural Graph Theory, e.g. in the context of the Strong Perfect Graph Theorem. The class of outerstring graphs is studied in Geometric Graph Theory and Computational Geometry. Our results also show that the distance functions of these (structurally) different graph classes are more similar than previously thought. There is a direct algorithmic consequence of having small isometric path complexity. Specifically, using a result of Chakraborty et al. [ISAAC 2022], we show that if the isometric path complexity of a graph G is bounded by a constant k, then there exists a k-factor approximation algorithm for Isometric Path Cover, whose objective is to cover all vertices of a graph with a minimum number of isometric paths.

Cite as

Dibyayan Chakraborty, Jérémie Chalopin, Florent Foucaud, and Yann Vaxès. Isometric Path Complexity of Graphs. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2023.32,
  author =	{Chakraborty, Dibyayan and Chalopin, J\'{e}r\'{e}mie and Foucaud, Florent and Vax\`{e}s, Yann},
  title =	{{Isometric Path Complexity of Graphs}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{32:1--32:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.32},
  URN =		{urn:nbn:de:0030-drops-185666},
  doi =		{10.4230/LIPIcs.MFCS.2023.32},
  annote =	{Keywords: Shortest paths, Isometric path complexity, Hyperbolic graphs, Truemper Configurations, Outerstring graphs, Isometric Path Cover}
}
Document
Sample Compression Schemes for Balls in Graphs

Authors: Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
One of the open problems in machine learning is whether any set-family of VC-dimension d admits a sample compression scheme of size O(d). In this paper, we study this problem for balls in graphs. For balls of arbitrary radius r, we design proper sample compression schemes of size 4 for interval graphs, of size 6 for trees of cycles, and of size 22 for cube-free median graphs. We also design approximate sample compression schemes of size 2 for balls of δ-hyperbolic graphs.

Cite as

Jérémie Chalopin, Victor Chepoi, Fionn Mc Inerney, Sébastien Ratel, and Yann Vaxès. Sample Compression Schemes for Balls in Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.MFCS.2022.31,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Mc Inerney, Fionn and Ratel, S\'{e}bastien and Vax\`{e}s, Yann},
  title =	{{Sample Compression Schemes for Balls in Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.31},
  URN =		{urn:nbn:de:0030-drops-168298},
  doi =		{10.4230/LIPIcs.MFCS.2022.31},
  annote =	{Keywords: Proper Sample Compression Schemes, Balls, Graphs, VC-dimension}
}
Document
Track A: Algorithms, Complexity and Games
Medians in Median Graphs and Their Cube Complexes in Linear Time

Authors: Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and Yann Vaxès

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of distances from x to all vertices of P. In this paper, we present a linear time algorithm to compute medians in median graphs, improving over the existing quadratic time algorithm. We also present a linear time algorithm to compute medians in the 𝓁₁-cube complexes associated with median graphs. Median graphs constitute the principal class of graphs investigated in metric graph theory and have a rich geometric and combinatorial structure. Our algorithm is based on the majority rule characterization of medians in median graphs and on a fast computation of parallelism classes of edges (Θ-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the following fellow traveler property of independent interest: the parents of any two adjacent vertices of G are also adjacent.

Cite as

Laurine Bénéteau, Jérémie Chalopin, Victor Chepoi, and Yann Vaxès. Medians in Median Graphs and Their Cube Complexes in Linear Time. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{beneteau_et_al:LIPIcs.ICALP.2020.10,
  author =	{B\'{e}n\'{e}teau, Laurine and Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Vax\`{e}s, Yann},
  title =	{{Medians in Median Graphs and Their Cube Complexes in Linear Time}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.10},
  URN =		{urn:nbn:de:0030-drops-124171},
  doi =		{10.4230/LIPIcs.ICALP.2020.10},
  annote =	{Keywords: Median Graph, CAT(0) Cube Complex, Median Problem, Linear Time Algorithm, LexBFS}
}
Document
Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs

Authors: Jérémie Chalopin, Victor Chepoi, Feodor F. Dragan, Guillaume Ducoffe, Abdulhakeem Mohammed, and Yann Vaxès

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
In this paper, we study Gromov hyperbolicity and related parameters, that represent how close (locally) a metric space is to a tree from a metric point of view. The study of Gromov hyperbolicity for geodesic metric spaces can be reduced to the study of graph hyperbolicity. Our main contribution in this note is a new characterization of hyperbolicity for graphs (and for complete geodesic metric spaces). This characterization has algorithmic implications in the field of large-scale network analysis, which was one of our initial motivations. A sharp estimate of graph hyperbolicity is useful, {e.g.}, in embedding an undirected graph into hyperbolic space with minimum distortion [Verbeek and Suri, SoCG'14]. The hyperbolicity of a graph can be computed in polynomial-time, however it is unlikely that it can be done in subcubic time. This makes this parameter difficult to compute or to approximate on large graphs. Using our new characterization of graph hyperbolicity, we provide a simple factor 8 approximation algorithm for computing the hyperbolicity of an n-vertex graph G=(V,E) in optimal time O(n^2) (assuming that the input is the distance matrix of the graph). This algorithm leads to constant factor approximations of other graph-parameters related to hyperbolicity (thinness, slimness, and insize). We also present the first efficient algorithms for exact computation of these parameters. All of our algorithms can be used to approximate the hyperbolicity of a geodesic metric space.

Cite as

Jérémie Chalopin, Victor Chepoi, Feodor F. Dragan, Guillaume Ducoffe, Abdulhakeem Mohammed, and Yann Vaxès. Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chalopin_et_al:LIPIcs.SoCG.2018.22,
  author =	{Chalopin, J\'{e}r\'{e}mie and Chepoi, Victor and Dragan, Feodor F. and Ducoffe, Guillaume and Mohammed, Abdulhakeem and Vax\`{e}s, Yann},
  title =	{{Fast Approximation and Exact Computation of Negative Curvature Parameters of Graphs}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.22},
  URN =		{urn:nbn:de:0030-drops-87356},
  doi =		{10.4230/LIPIcs.SoCG.2018.22},
  annote =	{Keywords: Gromov hyperbolicity, Graphs, Geodesic metric spaces, Approximation algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail