Search Results

Documents authored by Watrigant, Rémi


Document
Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Authors: Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
For any ε > 0, we give a polynomial-time n^ε-approximation algorithm for Max Independent Set in graphs of bounded twin-width given with an O(1)-sequence. This result is derived from the following time-approximation trade-off: We establish an O(1)^{2^q-1}-approximation algorithm running in time exp(O_q(n^{2^{-q}})), for every integer q ⩾ 0. Guided by the same framework, we obtain similar approximation algorithms for Min Coloring and Max Induced Matching. In general graphs, all these problems are known to be highly inapproximable: for any ε > 0, a polynomial-time n^{1-ε}-approximation for any of them would imply that P=NP [Håstad, FOCS '96; Zuckerman, ToC '07; Chalermsook et al., SODA '13]. We generalize the algorithms for Max Independent Set and Max Induced Matching to the independent (induced) packing of any fixed connected graph H. In contrast, we show that such approximation guarantees on graphs of bounded twin-width given with an O(1)-sequence are very unlikely for Min Independent Dominating Set, and somewhat unlikely for Longest Path and Longest Induced Path. Regarding the existence of better approximation algorithms, there is a (very) light evidence that the obtained approximation factor of n^ε for Max Independent Set may be best possible. This is the first in-depth study of the approximability of problems in graphs of bounded twin-width. Prior to this paper, essentially the only such result was a polynomial-time O(1)-approximation algorithm for Min Dominating Set [Bonnet et al., ICALP '21].

Cite as

Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berge_et_al:LIPIcs.STACS.2023.10,
  author =	{Berg\'{e}, Pierre and Bonnet, \'{E}douard and D\'{e}pr\'{e}s, Hugues and Watrigant, R\'{e}mi},
  title =	{{Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.10},
  URN =		{urn:nbn:de:0030-drops-176629},
  doi =		{10.4230/LIPIcs.STACS.2023.10},
  annote =	{Keywords: Approximation algorithms, bounded twin-width}
}
Document
Twin-Width and Polynomial Kernels

Authors: Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We study the existence of polynomial kernels for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. It was previously observed in [Bonnet et al., ICALP'21] that the problem k-Independent Set allows no polynomial kernel on graph of bounded twin-width by a very simple argument, which extends to several other problems such as k-Independent Dominating Set, k-Path, k-Induced Path, k-Induced Matching. In this work, we examine the k-Dominating Set and variants of k-Vertex Cover for the existence of polynomial kernels. As a main result, we show that k-Dominating Set does not admit a polynomial kernel on graphs of twin-width at most 4 under a standard complexity-theoretic assumption. The reduction is intricate, especially due to the effort to bring the twin-width down to 4, and it can be tweaked to work for Connected k-Dominating Set and Total k-Dominating Set with a slightly worse bound on the twin-width. On the positive side, we obtain a simple quadratic vertex kernel for Connected k-Vertex Cover and Capacitated k-Vertex Cover on graphs of bounded twin-width. These kernels rely on that graphs of bounded twin-width have Vapnik-Chervonenkis (VC) density 1, that is, for any vertex set X, the number of distinct neighborhoods in X is at most c⋅|X|, where c is a constant depending only on the twin-width. Interestingly the kernel applies to any graph class of VC density 1, and does not require a witness sequence. We also present a more intricate O(k^{1.5}) vertex kernel for Connected k-Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most graph optimization/decision problems can be solved in polynomial time on graphs of twin-width at most 1.

Cite as

Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant. Twin-Width and Polynomial Kernels. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2021.10,
  author =	{Bonnet, \'{E}douard and Kim, Eun Jung and Reinald, Amadeus and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Twin-Width and Polynomial Kernels}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.10},
  URN =		{urn:nbn:de:0030-drops-153932},
  doi =		{10.4230/LIPIcs.IPEC.2021.10},
  annote =	{Keywords: Twin-width, kernelization, lower bounds, Dominating Set}
}
Document
Track A: Algorithms, Complexity and Games
Twin-width III: Max Independent Set, Min Dominating Set, and Coloring

Authors: Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order model checking can be solved in time f(d,k)n for n-vertex graphs given with a witness that the twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet et al., FOCS '20]. The inevitable price to pay for such a general result is that f is a tower of exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need not be impractical. We present 2^{O(k)}n-time algorithms for k-Independent Set, r-Scattered Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism, and Induced Subgraph Isomorphism, in the slightly worse running time 2^{O(k log k)}n. Up to logarithmic factors in the exponent, all these running times are optimal, unless the Exponential Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a dynamic programming scheme following the sequence of contractions forward. We then show a second algorithmic use of the contraction sequence, by starting at its end and rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-width classes, and does so with a very concise proof. It readily yields a constant approximation for Max Independent Set on K_t-free graphs of bounded twin-width, and a 2^{O(OPT)}-approximation for Min Coloring on bounded twin-width graphs. We further observe that a constant approximation for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number) would actually imply a PTAS. The third algorithmic use of twin-width builds on the second one. Playing the contraction sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and hence All-Pairs Shortest Paths in time O(n log n) and time O(n² log n), respectively. In sharp contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width graphs, unless the Strong Exponential Time Hypothesis fails. The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions [Bonnet et al., SODA '21], a branching and more robust witness of low twin-width. We present constant-approximation algorithms for Min Dominating Set and related problems, on bounded twin-width graphs, by showing that the integrality gap is constant. This is done by going down the versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a greedy approach yields the desired approximation.

Cite as

Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 35:1-35:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2021.35,
  author =	{Bonnet, \'{E}douard and Geniet, Colin and Kim, Eun Jung and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Twin-width III: Max Independent Set, Min Dominating Set, and Coloring}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{35:1--35:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.35},
  URN =		{urn:nbn:de:0030-drops-141044},
  doi =		{10.4230/LIPIcs.ICALP.2021.35},
  annote =	{Keywords: Twin-width, Max Independent Set, Min Dominating Set, Coloring, Parameterized Algorithms, Approximation Algorithms, Exact Algorithms}
}
Document
An Algorithmic Weakening of the Erdős-Hajnal Conjecture

Authors: Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We study the approximability of the Maximum Independent Set (MIS) problem in H-free graphs (that is, graphs which do not admit H as an induced subgraph). As one motivation we investigate the following conjecture: for every fixed graph H, there exists a constant δ > 0 such that MIS can be n^{1-δ}-approximated in H-free graphs, where n denotes the number of vertices of the input graph. We first prove that a constructive version of the celebrated Erdős-Hajnal conjecture implies ours. We then prove that the set of graphs H satisfying our conjecture is closed under the so-called graph substitution. This, together with the known polynomial-time algorithms for MIS in H-free graphs (e.g. P₆-free and fork-free graphs), implies that our conjecture holds for many graphs H for which the Erdős-Hajnal conjecture is still open. We then focus on improving the constant δ for some graph classes: we prove that the classical Local Search algorithm provides an OPT^{1-1/t}-approximation in K_{t, t}-free graphs (hence a √{OPT}-approximation in C₄-free graphs), and, while there is a simple √n-approximation in triangle-free graphs, it cannot be improved to n^{1/4-ε} for any ε > 0 unless NP ⊆ BPP. More generally, we show that there is a constant c such that MIS in graphs of girth γ cannot be n^{c/(γ)}-approximated. Up to a constant factor in the exponent, this matches the ratio of a known approximation algorithm by Monien and Speckenmeyer, and by Murphy. To the best of our knowledge, this is the first strong (i.e., Ω(n^δ) for some δ > 0) inapproximability result for Maximum Independent Set in a proper hereditary class.

Cite as

Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant. An Algorithmic Weakening of the Erdős-Hajnal Conjecture. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ESA.2020.23,
  author =	{Bonnet, \'{E}douard and Thomass\'{e}, St\'{e}phan and Tran, Xuan Thang and Watrigant, R\'{e}mi},
  title =	{{An Algorithmic Weakening of the Erd\H{o}s-Hajnal Conjecture}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.23},
  URN =		{urn:nbn:de:0030-drops-128894},
  doi =		{10.4230/LIPIcs.ESA.2020.23},
  annote =	{Keywords: Approximation, Maximum Independent Set, H-free Graphs, Erd\H{o}s-Hajnal conjecture}
}
Document
When Maximum Stable Set Can Be Solved in FPT Time

Authors: Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W[1]-hard problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by the removal of a certain number of vertices and the addition/deletion of a certain number of edges per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions on these classes and use them to make some progress on the parameterized complexity of MIS in H-free graphs. We show that for every fixed t >=slant 1, MIS is FPT in P(1,t,t,t)-free graphs, where P(1,t,t,t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H.

Cite as

Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When Maximum Stable Set Can Be Solved in FPT Time. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ISAAC.2019.49,
  author =	{Bonnet, \'{E}douard and Bousquet, Nicolas and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{When Maximum Stable Set Can Be Solved in FPT Time}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.49},
  URN =		{urn:nbn:de:0030-drops-115458},
  doi =		{10.4230/LIPIcs.ISAAC.2019.49},
  annote =	{Keywords: Parameterized Algorithms, Independent Set, H-Free Graphs}
}
Document
Parameterized Complexity of Independent Set in H-Free Graphs

Authors: Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant

Published in: LIPIcs, Volume 115, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018)


Abstract
In this paper, we investigate the complexity of Maximum Independent Set (MIS) in the class of H-free graphs, that is, graphs excluding a fixed graph as an induced subgraph. Given that the problem remains NP-hard for most graphs H, we study its fixed-parameter tractability and make progress towards a dichotomy between FPT and W[1]-hard cases. We first show that MIS remains W[1]-hard in graphs forbidding simultaneously K_{1, 4}, any finite set of cycles of length at least 4, and any finite set of trees with at least two branching vertices. In particular, this answers an open question of Dabrowski et al. concerning C_4-free graphs. Then we extend the polynomial algorithm of Alekseev when H is a disjoint union of edges to an FPT algorithm when H is a disjoint union of cliques. We also provide a framework for solving several other cases, which is a generalization of the concept of iterative expansion accompanied by the extraction of a particular structure using Ramsey's theorem. Iterative expansion is a maximization version of the so-called iterative compression. We believe that our framework can be of independent interest for solving other similar graph problems. Finally, we present positive and negative results on the existence of polynomial (Turing) kernels for several graphs H.

Cite as

Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant. Parameterized Complexity of Independent Set in H-Free Graphs. In 13th International Symposium on Parameterized and Exact Computation (IPEC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 115, pp. 17:1-17:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.IPEC.2018.17,
  author =	{Bonnet, \'{E}douard and Bousquet, Nicolas and Charbit, Pierre and Thomass\'{e}, St\'{e}phan and Watrigant, R\'{e}mi},
  title =	{{Parameterized Complexity of Independent Set in H-Free Graphs}},
  booktitle =	{13th International Symposium on Parameterized and Exact Computation (IPEC 2018)},
  pages =	{17:1--17:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-084-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{115},
  editor =	{Paul, Christophe and Pilipczuk, Michal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2018.17},
  URN =		{urn:nbn:de:0030-drops-102183},
  doi =		{10.4230/LIPIcs.IPEC.2018.17},
  annote =	{Keywords: Parameterized Algorithms, Independent Set, H-Free Graphs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail