Published in: OASIcs, Volume 136, 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)
Ingo Pill, Daniel Jung, Eldin Kurudzija, Anna Sztyber-Betley, Michał Syfert, Kai Dresia, Günther Waxenegger-Wilfing, and Johan de Kleer. The DX Competition 2025 and Its Benchmarks (DX Competition). In 36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025). Open Access Series in Informatics (OASIcs), Volume 136, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{pill_et_al:OASIcs.DX.2025.14,
author = {Pill, Ingo and Jung, Daniel and Kurudzija, Eldin and Sztyber-Betley, Anna and Syfert, Micha{\l} and Dresia, Kai and Waxenegger-Wilfing, G\"{u}nther and de Kleer, Johan},
title = {{The DX Competition 2025 and Its Benchmarks}},
booktitle = {36th International Conference on Principles of Diagnosis and Resilient Systems (DX 2025)},
pages = {14:1--14:19},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-394-2},
ISSN = {2190-6807},
year = {2025},
volume = {136},
editor = {Quinones-Grueiro, Marcos and Biswas, Gautam and Pill, Ingo},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2025.14},
URN = {urn:nbn:de:0030-drops-248030},
doi = {10.4230/OASIcs.DX.2025.14},
annote = {Keywords: Diagnosis, Algorithms, Evaluation}
}
Published in: OASIcs, Volume 125, 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
Lukas Heppel, Andreas Gerhardus, Ferdinand Rewicki, Jan Deeken, and Günther Waxenegger-Wilfing. Leveraging Causal Information for Multivariate Timeseries Anomaly Detection. In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 11:1-11:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{heppel_et_al:OASIcs.DX.2024.11,
author = {Heppel, Lukas and Gerhardus, Andreas and Rewicki, Ferdinand and Deeken, Jan and Waxenegger-Wilfing, G\"{u}nther},
title = {{Leveraging Causal Information for Multivariate Timeseries Anomaly Detection}},
booktitle = {35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)},
pages = {11:1--11:18},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-356-0},
ISSN = {2190-6807},
year = {2024},
volume = {125},
editor = {Pill, Ingo and Natan, Avraham and Wotawa, Franz},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.11},
URN = {urn:nbn:de:0030-drops-221034},
doi = {10.4230/OASIcs.DX.2024.11},
annote = {Keywords: Anomaly Detection, Causal Discovery, Multivariate Timeseries}
}
Published in: OASIcs, Volume 125, 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
Andrea Urgolo, Ingo Pill, Günther Waxenegger-Wilfing, and Manuel Freiberger. Property Learning-Based Fault Detection for Liquid Propellant Rocket Engine Control Systems. In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{urgolo_et_al:OASIcs.DX.2024.15,
author = {Urgolo, Andrea and Pill, Ingo and Waxenegger-Wilfing, G\"{u}nther and Freiberger, Manuel},
title = {{Property Learning-Based Fault Detection for Liquid Propellant Rocket Engine Control Systems}},
booktitle = {35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)},
pages = {15:1--15:20},
series = {Open Access Series in Informatics (OASIcs)},
ISBN = {978-3-95977-356-0},
ISSN = {2190-6807},
year = {2024},
volume = {125},
editor = {Pill, Ingo and Natan, Avraham and Wotawa, Franz},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.15},
URN = {urn:nbn:de:0030-drops-221074},
doi = {10.4230/OASIcs.DX.2024.15},
annote = {Keywords: Machine learning, Runtime verification, Property learning, Monitoring, Fault detection, Diagnosis, Genetic programming, Explainable AI}
}