Search Results

Documents authored by Weber, Simon


Document
Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

Authors: Jonas Lill, Kalina Petrova, and Simon Weber

Published in: LIPIcs, Volume 321, 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)


Abstract
MaxCut is a classical NP-complete problem and a crucial building block in many combinatorial algorithms. The famous Edwards-Erdős bound states that any connected graph on n vertices with m edges contains a cut of size at least m/2+(n-1)/4. Crowston, Jones and Mnich [Algorithmica, 2015] showed that the MaxCut problem on simple connected graphs admits an FPT algorithm, where the parameter k is the difference between the desired cut size c and the lower bound given by the Edwards-Erdős bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run in parameterized linear time, i.e., f(k)⋅ O(m). We improve upon this result in two ways: Firstly, we extend the algorithm to work also for multigraphs (alternatively, graphs with positive integer weights). Secondly, we change the parameter; instead of the difference to the Edwards-Erdős bound, we use the difference to the Poljak-Turzík bound. The Poljak-Turzík bound states that any weighted graph G has a cut of size at least (w(G))/2+(w_MSF(G))/4, where w(G) denotes the total weight of G, and w_MSF(G) denotes the weight of its minimum spanning forest. In connected simple graphs the two bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger and thus yield a smaller parameter k. Our algorithm also runs in parameterized linear time, i.e., f(k)⋅ O(m+n).

Cite as

Jonas Lill, Kalina Petrova, and Simon Weber. Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lill_et_al:LIPIcs.IPEC.2024.2,
  author =	{Lill, Jonas and Petrova, Kalina and Weber, Simon},
  title =	{{Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turz{\'\i}k Bound}},
  booktitle =	{19th International Symposium on Parameterized and Exact Computation (IPEC 2024)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-353-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{321},
  editor =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024.2},
  URN =		{urn:nbn:de:0030-drops-222282},
  doi =		{10.4230/LIPIcs.IPEC.2024.2},
  annote =	{Keywords: Fixed-parameter tractability, maximum cut, Edwards-Erd\H{o}s bound, Poljak-Turz{\'\i}k bound, multigraphs, integer-weighted graphs}
}
Document
Track A: Algorithms, Complexity and Games
Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents

Authors: Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide polynomial-time reductions between three search problems from three distinct areas: the P-matrix linear complementarity problem (P-LCP), finding the sink of a unique sink orientation (USO), and a variant of the α-Ham Sandwich problem. For all three settings, we show that "two choices are enough", meaning that the general non-binary version of the problem can be reduced in polynomial time to the binary version. This specifically means that generalized P-LCPs are equivalent to P-LCPs, and grid USOs are equivalent to cube USOs. These results are obtained by showing that both the P-LCP and our α-Ham Sandwich variant are equivalent to a new problem we introduce, P-Lin-Bellman. This problem can be seen as a new tool for formulating problems as P-LCPs.

Cite as

Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and Simon Weber. Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{borzechowski_et_al:LIPIcs.ICALP.2024.32,
  author =	{Borzechowski, Michaela and Fearnley, John and Gordon, Spencer and Savani, Rahul and Schnider, Patrick and Weber, Simon},
  title =	{{Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.32},
  URN =		{urn:nbn:de:0030-drops-201751},
  doi =		{10.4230/LIPIcs.ICALP.2024.32},
  annote =	{Keywords: P-LCP, Unique Sink Orientation, \alpha-Ham Sandwich, search complexity, TFNP, UEOPL}
}
Document
A Topological Version of Schaefer’s Dichotomy Theorem

Authors: Patrick Schnider and Simon Weber

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Schaefer’s dichotomy theorem states that a Boolean constraint satisfaction problem (CSP) is polynomial-time solvable if one of four given conditions holds for every type of constraint allowed in its instances. Otherwise, it is NP-complete. In this paper, we analyze Boolean CSPs in terms of their topological complexity, instead of their computational complexity. Motivated by complexity and topological universality results in computational geometry, we attach a natural topological space to the set of solutions of a Boolean CSP and introduce the notion of projection-universality. We prove that a Boolean CSP is projection-universal if and only if it is categorized as NP-complete by Schaefer’s dichotomy theorem, showing that the dichotomy translates exactly from computational to topological complexity. We show a similar dichotomy for SAT variants and homotopy-universality.

Cite as

Patrick Schnider and Simon Weber. A Topological Version of Schaefer’s Dichotomy Theorem. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 77:1-77:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schnider_et_al:LIPIcs.SoCG.2024.77,
  author =	{Schnider, Patrick and Weber, Simon},
  title =	{{A Topological Version of Schaefer’s Dichotomy Theorem}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{77:1--77:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.77},
  URN =		{urn:nbn:de:0030-drops-200220},
  doi =		{10.4230/LIPIcs.SoCG.2024.77},
  annote =	{Keywords: Computational topology, Boolean CSP, satisfiability, computational complexity, solution space, homotopy universality, homological connectivity}
}
Document
An FPT Algorithm for Splitting a Necklace Among Two Thieves

Authors: Michaela Borzechowski, Patrick Schnider, and Simon Weber

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
It is well-known that the 2-Thief-Necklace-Splitting problem reduces to the discrete Ham Sandwich problem. In fact, this reduction was crucial in the proof of the PPA-completeness of the Ham Sandwich problem [Filos-Ratsikas and Goldberg, STOC'19]. Recently, a variant of the Ham Sandwich problem called α-Ham Sandwich has been studied, in which the point sets are guaranteed to be well-separated [Steiger and Zhao, DCG'10]. The complexity of this search problem remains unknown, but it is known to lie in the complexity class UEOPL [Chiu, Choudhary and Mulzer, ICALP'20]. We define the analogue of this well-separation condition in the necklace splitting problem - a necklace is n-separable, if every subset A of the n types of jewels can be separated from the types [n]⧵A by at most n separator points. Since this version of necklace splitting reduces to α-Ham Sandwich in a solution-preserving way it follows that instances of this version always have unique solutions. We furthermore provide two FPT algorithms: The first FPT algorithm solves 2-Thief-Necklace-Splitting on (n-1+𝓁)-separable necklaces with n types of jewels and m total jewels in time 2^O(𝓁log𝓁) + O(m²). In particular, this shows that 2-Thief-Necklace-Splitting is polynomial-time solvable on n-separable necklaces. Thus, attempts to show hardness of α-Ham Sandwich through reduction from the 2-Thief-Necklace-Splitting problem cannot work. The second FPT algorithm tests (n-1+𝓁)-separability of a given necklace with n types of jewels in time 2^O(𝓁²) ⋅ n⁴. In particular, n-separability can thus be tested in polynomial time, even though testing well-separation of point sets is co-NP-complete [Bergold et al., SWAT'22].

Cite as

Michaela Borzechowski, Patrick Schnider, and Simon Weber. An FPT Algorithm for Splitting a Necklace Among Two Thieves. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{borzechowski_et_al:LIPIcs.ISAAC.2023.15,
  author =	{Borzechowski, Michaela and Schnider, Patrick and Weber, Simon},
  title =	{{An FPT Algorithm for Splitting a Necklace Among Two Thieves}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.15},
  URN =		{urn:nbn:de:0030-drops-193178},
  doi =		{10.4230/LIPIcs.ISAAC.2023.15},
  annote =	{Keywords: Necklace splitting, n-separability, well-separation, ham sandwich, FPT}
}
Document
RANDOM
On Connectivity in Random Graph Models with Limited Dependencies

Authors: Johannes Lengler, Anders Martinsson, Kalina Petrova, Patrick Schnider, Raphael Steiner, Simon Weber, and Emo Welzl

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
For any positive edge density p, a random graph in the Erdős-Rényi G_{n,p} model is connected with non-zero probability, since all edges are mutually independent. We consider random graph models in which edges that do not share endpoints are independent while incident edges may be dependent and ask: what is the minimum probability ρ(n), such that for any distribution 𝒢 (in this model) on graphs with n vertices in which each potential edge has a marginal probability of being present at least ρ(n), a graph drawn from 𝒢 is connected with non-zero probability? As it turns out, the condition "edges that do not share endpoints are independent" needs to be clarified and the answer to the question above is sensitive to the specification. In fact, we formalize this intuitive description into a strict hierarchy of five independence conditions, which we show to have at least three different behaviors for the threshold ρ(n). For each condition, we provide upper and lower bounds for ρ(n). In the strongest condition, the coloring model (which includes, e.g., random geometric graphs), we show that ρ(n) → 2-ϕ ≈ 0.38 for n → ∞, proving a conjecture by Badakhshian, Falgas-Ravry, and Sharifzadeh. This separates the coloring models from the weaker independence conditions we consider, as there we prove that ρ(n) > 0.5-o(n). In stark contrast to the coloring model, for our weakest independence condition - pairwise independence of non-adjacent edges - we show that ρ(n) lies within O(1/n²) of the threshold 1-2/n for completely arbitrary distributions.

Cite as

Johannes Lengler, Anders Martinsson, Kalina Petrova, Patrick Schnider, Raphael Steiner, Simon Weber, and Emo Welzl. On Connectivity in Random Graph Models with Limited Dependencies. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 30:1-30:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lengler_et_al:LIPIcs.APPROX/RANDOM.2023.30,
  author =	{Lengler, Johannes and Martinsson, Anders and Petrova, Kalina and Schnider, Patrick and Steiner, Raphael and Weber, Simon and Welzl, Emo},
  title =	{{On Connectivity in Random Graph Models with Limited Dependencies}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{30:1--30:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.30},
  URN =		{urn:nbn:de:0030-drops-188556},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.30},
  annote =	{Keywords: Random Graphs, Independence, Dependency, Connectivity, Threshold, Probabilistic Method}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail