Found 2 Possible Name Variants:

Document

**Published in:** LIPIcs, Volume 63, 11th International Symposium on Parameterized and Exact Computation (IPEC 2016)

Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864-1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size t one can find an explicit set R_t of representatives. Any subgraph H with a boundary of size t can be replaced with a representative H' in R_t such that the effect of this replacement on the optimum can be deduced from H and H' alone. Their upper bounds on the size of the graphs in R_t grow triple-exponentially with t. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size t. For example, we show that each set of planar representatives R_t for the Independent Set problem contains a graph with Omega(2^t / sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on t-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 2^{2^t}, improving on earlier bounds of the form (t+1)^{2^t}.

Bart M. P. Jansen and Jules J. H. M. Wulms. Lower Bounds for Protrusion Replacement by Counting Equivalence Classes. In 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 63, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{jansen_et_al:LIPIcs.IPEC.2016.17, author = {Jansen, Bart M. P. and Wulms, Jules J. H. M.}, title = {{Lower Bounds for Protrusion Replacement by Counting Equivalence Classes}}, booktitle = {11th International Symposium on Parameterized and Exact Computation (IPEC 2016)}, pages = {17:1--17:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-023-1}, ISSN = {1868-8969}, year = {2017}, volume = {63}, editor = {Guo, Jiong and Hermelin, Danny}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2016.17}, URN = {urn:nbn:de:0030-drops-69275}, doi = {10.4230/LIPIcs.IPEC.2016.17}, annote = {Keywords: protrusions, boundaried graphs, independent set, equivalence classes, finite integer index} }

Document

**Published in:** LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)

The labeling of point features on a map is a well-studied topic. In a static setting, the goal is to find a non-overlapping label placement for (a subset of) point features. In a dynamic setting, the set of point features and their corresponding labels change, and the labeling has to adapt to such changes. To aid the user in tracking these changes, we can use morphs, here called transitions, to indicate how a labeling changes. Such transitions have not gained much attention yet, and we investigate different types of transitions for labelings of points, most notably consecutive transitions and simultaneous transitions. We give (tight) bounds on the number of overlaps that can occur during these transitions. When each label has a (non-negative) weight associated to it, and each overlap imposes a penalty proportional to the weight of the overlapping labels, we show that it is NP-complete to decide whether the penalty during a simultaneous transition has weight at most k. Finally, in a case study, we consider geotagged Twitter data on a map, by labeling points with rectangular labels showing tweets. We developed a prototype implementation to evaluate different transition styles in practice, measuring both number of overlaps and transition duration.

Thomas Depian, Guangping Li, Martin Nöllenburg, and Jules Wulms. Transitions in Dynamic Point Labeling. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{depian_et_al:LIPIcs.GIScience.2023.2, author = {Depian, Thomas and Li, Guangping and N\"{o}llenburg, Martin and Wulms, Jules}, title = {{Transitions in Dynamic Point Labeling}}, booktitle = {12th International Conference on Geographic Information Science (GIScience 2023)}, pages = {2:1--2:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-288-4}, ISSN = {1868-8969}, year = {2023}, volume = {277}, editor = {Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.2}, URN = {urn:nbn:de:0030-drops-188971}, doi = {10.4230/LIPIcs.GIScience.2023.2}, annote = {Keywords: Dynamic labels, Label overlaps, Morphs, NP-completeness, Case study} }

Document

**Published in:** LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)

Edge-connected configurations of square modules, which can reconfigure through so-called sliding moves, are a well-established theoretical model for modular robots in two dimensions. Dumitrescu and Pach [Graphs and Combinatorics, 2006] proved that it is always possible to reconfigure one edge-connected configuration of n squares into any other using at most O(n²) sliding moves, while keeping the configuration connected at all times.
For certain pairs of configurations, reconfiguration may require Ω(n²) sliding moves. However, significantly fewer moves may be sufficient. We prove that it is NP-hard to minimize the number of sliding moves for a given pair of edge-connected configurations. On the positive side we present Gather&Compact, an input-sensitive in-place algorithm that requires only O( ̄P n) sliding moves to transform one configuration into the other, where ̄P is the maximum perimeter of the two bounding boxes. The squares move within the bounding boxes only, with the exception of at most one square at a time which may move through the positions adjacent to the bounding boxes. The O( ̄P n) bound never exceeds O(n²), and is optimal (up to constant factors) among all bounds parameterized by just n and ̄P. Our algorithm is built on the basic principle that well-connected components of modular robots can be transformed efficiently. Hence we iteratively increase the connectivity within a configuration, to finally arrive at a single solid xy-monotone component.
We implemented Gather&Compact and compared it experimentally to the in-place modification by Moreno and Sacristán [EuroCG 2020] of the Dumitrescu and Pach algorithm (MSDP). Our experiments show that Gather&Compact consistently outperforms MSDP by a significant margin, on all types of square configurations.

Hugo A. Akitaya, Erik D. Demaine, Matias Korman, Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, Ryuhei Uehara, and Jules Wulms. Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.SWAT.2022.4, author = {A. Akitaya, Hugo and Demaine, Erik D. and Korman, Matias and Kostitsyna, Irina and Parada, Irene and Sonke, Willem and Speckmann, Bettina and Uehara, Ryuhei and Wulms, Jules}, title = {{Compacting Squares: Input-Sensitive In-Place Reconfiguration of Sliding Squares}}, booktitle = {18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)}, pages = {4:1--4:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-236-5}, ISSN = {1868-8969}, year = {2022}, volume = {227}, editor = {Czumaj, Artur and Xin, Qin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.4}, URN = {urn:nbn:de:0030-drops-161644}, doi = {10.4230/LIPIcs.SWAT.2022.4}, annote = {Keywords: Sliding cubes, Reconfiguration, Modular robots, NP-hardness} }

Document

Media Exposition

**Published in:** LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)

We describe SquareSlider, a software framework for visualizing reconfiguration algorithms of modular robots in the sliding square model. In this model, a robot consists of a configuration of squares in a rectangular grid, which can reconfigure through a fixed set of possible moves. SquareSlider is a web-based tool that implements an easy-to-use interface allowing the user to build a configuration, run a reconfiguration algorithm on it, and examine the results.

Willem Sonke and Jules Wulms. An Interactive Framework for Reconfiguration in the Sliding Square Model (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 70:1-70:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{sonke_et_al:LIPIcs.SoCG.2022.70, author = {Sonke, Willem and Wulms, Jules}, title = {{An Interactive Framework for Reconfiguration in the Sliding Square Model}}, booktitle = {38th International Symposium on Computational Geometry (SoCG 2022)}, pages = {70:1--70:4}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-227-3}, ISSN = {1868-8969}, year = {2022}, volume = {224}, editor = {Goaoc, Xavier and Kerber, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.70}, URN = {urn:nbn:de:0030-drops-160781}, doi = {10.4230/LIPIcs.SoCG.2022.70}, annote = {Keywords: Modular robots, Implementation, Visualization} }

Document

Media Exposition

**Published in:** LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

Face-connected configurations of cubes are a common model for modular robots in three dimensions. In this abstract and the accompanying video we study reconfigurations of such modular robots using so-called sliding moves. Using sliding moves, it is always possible to reconfigure one face-connected configuration of n cubes into any other, while keeping the robot connected at all stages of the reconfiguration. For certain configurations Ω(n²) sliding moves are necessary. In contrast, the best current upper bound is O(n³). It has been conjectured that there is always a cube on the outside of any face-connected configuration of cubes which can be moved without breaking connectivity. The existence of such a cube would immediately imply a straight-forward O(n²) reconfiguration algorithm. However, we present a configuration of cubes such that no cube on the outside can move without breaking connectivity. In other words, we show that this particular avenue towards an O(n²) reconfiguration algorithm for face-connected cubes is blocked.

Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Hiding Sliding Cubes: Why Reconfiguring Modular Robots Is Not Easy (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 78:1-78:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{miltzow_et_al:LIPIcs.SoCG.2020.78, author = {Miltzow, Tillmann and Parada, Irene and Sonke, Willem and Speckmann, Bettina and Wulms, Jules}, title = {{Hiding Sliding Cubes: Why Reconfiguring Modular Robots Is Not Easy}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {78:1--78:5}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.78}, URN = {urn:nbn:de:0030-drops-122363}, doi = {10.4230/LIPIcs.SoCG.2020.78}, annote = {Keywords: Sliding cubes, Reconfiguration, Modular robots} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail