Document

**Published in:** LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)

Submodular functions are fundamental to combinatorial optimization. Many interesting problems can be formulated as special cases of problems involving submodular functions. In this work, we consider the problem of approximating symmetric submodular functions everywhere using hypergraph cut functions. Devanur, Dughmi, Schwartz, Sharma, and Singh [Devanur et al., 2013] showed that symmetric submodular functions over n-element ground sets cannot be approximated within (n/8)-factor using a graph cut function and raised the question of approximating them using hypergraph cut functions. Our main result is that there exist symmetric submodular functions over n-element ground sets that cannot be approximated within a o(n^{1/3}/log² n)-factor using a hypergraph cut function. On the positive side, we show that symmetrized concave linear functions and symmetrized rank functions of uniform matroids and partition matroids can be constant-approximated using hypergraph cut functions.

Calvin Beideman, Karthekeyan Chandrasekaran, Chandra Chekuri, and Chao Xu. Approximate Representation of Symmetric Submodular Functions via Hypergraph Cut Functions. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{beideman_et_al:LIPIcs.FSTTCS.2022.6, author = {Beideman, Calvin and Chandrasekaran, Karthekeyan and Chekuri, Chandra and Xu, Chao}, title = {{Approximate Representation of Symmetric Submodular Functions via Hypergraph Cut Functions}}, booktitle = {42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)}, pages = {6:1--6:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-261-7}, ISSN = {1868-8969}, year = {2022}, volume = {250}, editor = {Dawar, Anuj and Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.6}, URN = {urn:nbn:de:0030-drops-173986}, doi = {10.4230/LIPIcs.FSTTCS.2022.6}, annote = {Keywords: Submodular Functions, Hypergraphs, Approximation, Representation} }

Document

**Published in:** LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

The Traveling Tournament Problem (TTP) is a well-known benchmark problem in the field of tournament timetabling, which asks us to design a double round-robin schedule such that each pair of teams plays one game in each other’s home venue, minimizing the total distance traveled by all n teams (n is even). TTP-k is the problem with one more constraint that each team can have at most k consecutive home games or away games. The case where k = 3, TTP-3, is one of the most investigated cases. In this paper, we improve the approximation ratio of TTP-3 from (1.667+ε) to (1.598+ε), for any ε > 0. Previous schedules were constructed based on a Hamiltonian cycle of the graph. We propose a novel construction based on triangle packing. Then, by combining our triangle packing schedule with the Hamiltonian cycle schedule, we obtain the improved approximation ratio. The idea of our construction can also be extended to k ≥ 4. We demonstrate that the approximation ratio of TTP-4 can be improved from (1.750+ε) to (1.700+ε) by the same method. As an additional product, we also improve the approximation ratio of LDTTP-3 (TTP-3 where all teams are allocated on a straight line) from 4/3 to (6/5+ε).

Jingyang Zhao, Mingyu Xiao, and Chao Xu. Improved Approximation Algorithms for the Traveling Tournament Problem. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 83:1-83:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{zhao_et_al:LIPIcs.MFCS.2022.83, author = {Zhao, Jingyang and Xiao, Mingyu and Xu, Chao}, title = {{Improved Approximation Algorithms for the Traveling Tournament Problem}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {83:1--83:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.83}, URN = {urn:nbn:de:0030-drops-168813}, doi = {10.4230/LIPIcs.MFCS.2022.83}, annote = {Keywords: Sports scheduling, Traveling Tournament Problem, Approximation algorithm} }

Document

RANDOM

**Published in:** LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)

We address counting and optimization variants of multicriteria global min-cut and size-constrained min-k-cut in hypergraphs.
1) For an r-rank n-vertex hypergraph endowed with t hyperedge-cost functions, we show that the number of multiobjective min-cuts is O(r2^{tr}n^{3t-1}). In particular, this shows that the number of parametric min-cuts in constant rank hypergraphs for a constant number of criteria is strongly polynomial, thus resolving an open question by Aissi, Mahjoub, McCormick, and Queyranne [Aissi et al., 2015]. In addition, we give randomized algorithms to enumerate all multiobjective min-cuts and all pareto-optimal cuts in strongly polynomial-time.
2) We also address node-budgeted multiobjective min-cuts: For an n-vertex hypergraph endowed with t vertex-weight functions, we show that the number of node-budgeted multiobjective min-cuts is O(r2^{r}n^{t+2}), where r is the rank of the hypergraph, and the number of node-budgeted b-multiobjective min-cuts for a fixed budget-vector b ∈ ℝ^t_+ is O(n²).
3) We show that min-k-cut in hypergraphs subject to constant lower bounds on part sizes is solvable in polynomial-time for constant k, thus resolving an open problem posed by Queyranne [Guinez and Queyranne, 2012]. Our technique also shows that the number of optimal solutions is polynomial. All of our results build on the random contraction approach of Karger [Karger, 1993]. Our techniques illustrate the versatility of the random contraction approach to address counting and algorithmic problems concerning multiobjective min-cuts and size-constrained k-cuts in hypergraphs.

Calvin Beideman, Karthekeyan Chandrasekaran, and Chao Xu. Multicriteria Cuts and Size-Constrained k-Cuts in Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)

Copy BibTex To Clipboard

@InProceedings{beideman_et_al:LIPIcs.APPROX/RANDOM.2020.17, author = {Beideman, Calvin and Chandrasekaran, Karthekeyan and Xu, Chao}, title = {{Multicriteria Cuts and Size-Constrained k-Cuts in Hypergraphs}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)}, pages = {17:1--17:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-164-1}, ISSN = {1868-8969}, year = {2020}, volume = {176}, editor = {Byrka, Jaros{\l}aw and Meka, Raghu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.17}, URN = {urn:nbn:de:0030-drops-126203}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2020.17}, annote = {Keywords: Multiobjective Optimization, Hypergraph min-cut, Hypergraph-k-cut} }

Document

**Published in:** OASIcs, Volume 69, 2nd Symposium on Simplicity in Algorithms (SOSA 2019)

Karger used spanning tree packings [Karger, 2000] to derive a near linear-time randomized algorithm for the global minimum cut problem as well as a bound on the number of approximate minimum cuts. This is a different approach from his well-known random contraction algorithm [Karger, 1995; Karger and Stein, 1996]. Thorup developed a fast deterministic algorithm for the minimum k-cut problem via greedy recursive tree packings [Thorup, 2008].
In this paper we revisit properties of an LP relaxation for k-cut proposed by Naor and Rabani [Naor and Rabani, 2001], and analyzed in [Chekuri et al., 2006]. We show that the dual of the LP yields a tree packing, that when combined with an upper bound on the integrality gap for the LP, easily and transparently extends Karger's analysis for mincut to the k-cut problem. In addition to the simplicity of the algorithm and its analysis, this allows us to improve the running time of Thorup's algorithm by a factor of n. We also improve the bound on the number of alpha-approximate k-cuts. Second, we give a simple proof that the integrality gap of the LP is 2(1-1/n). Third, we show that an optimum solution to the LP relaxation, for all values of k, is fully determined by the principal sequence of partitions of the input graph. This allows us to relate the LP relaxation to the Lagrangean relaxation approach of Barahona [Barahona, 2000] and Ravi and Sinha [Ravi and Sinha, 2008]; it also shows that the idealized recursive tree packing considered by Thorup gives an optimum dual solution to the LP. This work arose from an effort to understand and simplify the results of Thorup [Thorup, 2008].

Chandra Chekuri, Kent Quanrud, and Chao Xu. LP Relaxation and Tree Packing for Minimum k-cuts. In 2nd Symposium on Simplicity in Algorithms (SOSA 2019). Open Access Series in Informatics (OASIcs), Volume 69, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:OASIcs.SOSA.2019.7, author = {Chekuri, Chandra and Quanrud, Kent and Xu, Chao}, title = {{LP Relaxation and Tree Packing for Minimum k-cuts}}, booktitle = {2nd Symposium on Simplicity in Algorithms (SOSA 2019)}, pages = {7:1--7:18}, series = {Open Access Series in Informatics (OASIcs)}, ISBN = {978-3-95977-099-6}, ISSN = {2190-6807}, year = {2019}, volume = {69}, editor = {Fineman, Jeremy T. and Mitzenmacher, Michael}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.SOSA.2019.7}, URN = {urn:nbn:de:0030-drops-100335}, doi = {10.4230/OASIcs.SOSA.2019.7}, annote = {Keywords: k-cut, LP relaxation, tree packing} }

Document

**Published in:** LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)

The computational complexity of multicut-like problems may vary significantly depending on whether the terminals are fixed or not. In this work we present a comprehensive study of this phenomenon in two types of cut problems in directed graphs: double cut and bicut.
1. Fixed-terminal edge-weighted double cut is known to be solvable efficiently. We show that fixed-terminal node-weighted double cut cannot be approximated to a factor smaller than 2 under the Unique Games Conjecture (UGC), and we also give a 2-approximation algorithm. For the global version of the problem, we prove an inapproximability bound of 3/2 under UGC.
2. Fixed-terminal edge-weighted bicut is known to have an approximability factor of 2 that is tight under UGC. We show that the global edge-weighted bicut is approximable to
a factor strictly better than 2, and that the global node-weighted bicut cannot be approximated to a factor smaller than 3/2 under UGC.
3. In relation to these investigations, we also prove two results on undirected graphs which are of independent interest. First, we show NP-completeness and a tight inapproximability bound of 4/3 for the node-weighted 3-cut problem under UGC. Second, we show that for constant k, there exists an efficient algorithm to solve the minimum {s,t}-separating k-cut problem.
Our techniques for the algorithms are combinatorial, based on LPs and based on the enumeration of approximate min-cuts. Our hardness results are based on combinatorial reductions and integrality gap instances.

Kristóf Bérczi, Karthekeyan Chandrasekaran, Tamás Király, Euiwoong Lee, and Chao Xu. Global and Fixed-Terminal Cuts in Digraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{berczi_et_al:LIPIcs.APPROX-RANDOM.2017.2, author = {B\'{e}rczi, Krist\'{o}f and Chandrasekaran, Karthekeyan and Kir\'{a}ly, Tam\'{a}s and Lee, Euiwoong and Xu, Chao}, title = {{Global and Fixed-Terminal Cuts in Digraphs}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)}, pages = {2:1--2:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-044-6}, ISSN = {1868-8969}, year = {2017}, volume = {81}, editor = {Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.2}, URN = {urn:nbn:de:0030-drops-75511}, doi = {10.4230/LIPIcs.APPROX-RANDOM.2017.2}, annote = {Keywords: Directed Graphs, Arborescence, Graph Cuts, Hardness of Approximation} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail