Search Results

Documents authored by Yan, Chao


Document
RANDOM
Hilbert Functions and Low-Degree Randomness Extractors

Authors: Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For S ⊆ 𝔽ⁿ, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert function of S, denoted h_S(d,𝔽), is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets S of arbitrary finite grids in 𝔽ⁿ with a fixed size |S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size |S|. Understanding the smallest values of Hilbert functions is closely related to the study of degree-d closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures of subsets of 𝔽_qⁿ, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.

Cite as

Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan. Hilbert Functions and Low-Degree Randomness Extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 41:1-41:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX/RANDOM.2024.41,
  author =	{Golovnev, Alexander and Guo, Zeyu and Hatami, Pooya and Nagargoje, Satyajeet and Yan, Chao},
  title =	{{Hilbert Functions and Low-Degree Randomness Extractors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{41:1--41:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.41},
  URN =		{urn:nbn:de:0030-drops-210345},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.41},
  annote =	{Keywords: Extractors, Dispersers, Circuits, Hilbert Function, Randomness, Low Degree Polynomials}
}
Document
Necessary Conditions in Multi-Server Differential Privacy

Authors: Albert Cheu and Chao Yan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We consider protocols where users communicate with multiple servers to perform a computation on the users' data. An adversary exerts semi-honest control over many of the parties but its view is differentially private with respect to honest users. Prior work described protocols that required multiple rounds of interaction or offered privacy against a computationally bounded adversary. Our work presents limitations of non-interactive protocols that offer privacy against unbounded adversaries. We prove that these protocols require exponentially more samples than centrally private counterparts to solve some learning, testing, and estimation tasks. This means sample-efficiency demands interactivity or computational differential privacy, or both.

Cite as

Albert Cheu and Chao Yan. Necessary Conditions in Multi-Server Differential Privacy. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cheu_et_al:LIPIcs.ITCS.2023.36,
  author =	{Cheu, Albert and Yan, Chao},
  title =	{{Necessary Conditions in Multi-Server Differential Privacy}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{36:1--36:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.36},
  URN =		{urn:nbn:de:0030-drops-175395},
  doi =		{10.4230/LIPIcs.ITCS.2023.36},
  annote =	{Keywords: Differential Privacy, Parity Learning, Multi-server}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail