Search Results

Documents authored by Zhang, Jiapeng


Document
Fractional Certificates for Bounded Functions

Authors: Shachar Lovett and Jiapeng Zhang

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A folklore conjecture in quantum computing is that the acceptance probability of a quantum query algorithm can be approximated by a classical decision tree, with only a polynomial increase in the number of queries. Motivated by this conjecture, Aaronson and Ambainis (Theory of Computing, 2014) conjectured that this should hold more generally for any bounded function computed by a low degree polynomial. In this work we prove two new results towards establishing this conjecture: first, that any such polynomial has a small fractional certificate complexity; and second, that many inputs have a small sensitive block. We show that these would imply the Aaronson and Ambainis conjecture, assuming a conjectured extension of Talagrand’s concentration inequality. On the technical side, many classical techniques used in the analysis of Boolean functions seem to fail when applied to bounded functions. Here, we develop a new technique, based on a mix of combinatorics, analysis and geometry, and which in part extends a recent technique of Knop et al. (STOC 2021) to bounded functions.

Cite as

Shachar Lovett and Jiapeng Zhang. Fractional Certificates for Bounded Functions. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 84:1-84:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lovett_et_al:LIPIcs.ITCS.2023.84,
  author =	{Lovett, Shachar and Zhang, Jiapeng},
  title =	{{Fractional Certificates for Bounded Functions}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{84:1--84:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.84},
  URN =		{urn:nbn:de:0030-drops-175871},
  doi =		{10.4230/LIPIcs.ITCS.2023.84},
  annote =	{Keywords: Aaronson-Ambainis conjecture, fractional block sensitivity, Talagrand inequality}
}
Document
Lifting with Sunflowers

Authors: Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
Query-to-communication lifting theorems translate lower bounds on query complexity to lower bounds for the corresponding communication model. In this paper, we give a simplified proof of deterministic lifting (in both the tree-like and dag-like settings). Our proof uses elementary counting together with a novel connection to the sunflower lemma. In addition to a simplified proof, our approach opens up a new avenue of attack towards proving lifting theorems with improved gadget size - one of the main challenges in the area. Focusing on one of the most widely used gadgets - the index gadget - existing lifting techniques are known to require at least a quadratic gadget size. Our new approach combined with robust sunflower lemmas allows us to reduce the gadget size to near linear. We conjecture that it can be further improved to polylogarithmic, similar to the known bounds for the corresponding robust sunflower lemmas.

Cite as

Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with Sunflowers. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 104:1-104:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lovett_et_al:LIPIcs.ITCS.2022.104,
  author =	{Lovett, Shachar and Meka, Raghu and Mertz, Ian and Pitassi, Toniann and Zhang, Jiapeng},
  title =	{{Lifting with Sunflowers}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{104:1--104:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.104},
  URN =		{urn:nbn:de:0030-drops-157004},
  doi =		{10.4230/LIPIcs.ITCS.2022.104},
  annote =	{Keywords: Lifting theorems, communication complexity, combinatorics, sunflowers}
}
Document
From DNF Compression to Sunflower Theorems via Regularity

Authors: Shachar Lovett, Noam Solomon, and Jiapeng Zhang

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
The sunflower conjecture is one of the most well-known open problems in combinatorics. It has several applications in theoretical computer science, one of which is DNF compression, due to Gopalan, Meka and Reingold (Computational Complexity, 2013). In this paper, we show that improved bounds for DNF compression imply improved bounds for the sunflower conjecture, which is the reverse direction of the DNF compression result. The main approach is based on regularity of set systems and a structure-vs-pseudorandomness approach to the sunflower conjecture.

Cite as

Shachar Lovett, Noam Solomon, and Jiapeng Zhang. From DNF Compression to Sunflower Theorems via Regularity. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 5:1-5:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lovett_et_al:LIPIcs.CCC.2019.5,
  author =	{Lovett, Shachar and Solomon, Noam and Zhang, Jiapeng},
  title =	{{From DNF Compression to Sunflower Theorems via Regularity}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{5:1--5:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.5},
  URN =		{urn:nbn:de:0030-drops-108277},
  doi =		{10.4230/LIPIcs.CCC.2019.5},
  annote =	{Keywords: DNF sparsification, sunflower conjecture, regular set systems}
}
Document
Sunflowers and Quasi-Sunflowers from Randomness Extractors

Authors: Xin Li, Shachar Lovett, and Jiapeng Zhang

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
The Erdös-Rado sunflower theorem (Journal of Lond. Math. Soc. 1960) is a fundamental result in combinatorics, and the corresponding sunflower conjecture is a central open problem. Motivated by applications in complexity theory, Rossman (FOCS 2010) extended the result to quasi-sunflowers, where similar conjectures emerge about the optimal parameters for which it holds. In this work, we exhibit a surprising connection between the existence of sunflowers and quasi-sunflowers in large enough set systems, and the problem of constructing (or existing) certain randomness extractors. This allows us to re-derive the known results in a systematic manner, and to reduce the relevant conjectures to the problem of obtaining improved constructions of the randomness extractors.

Cite as

Xin Li, Shachar Lovett, and Jiapeng Zhang. Sunflowers and Quasi-Sunflowers from Randomness Extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 51:1-51:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX-RANDOM.2018.51,
  author =	{Li, Xin and Lovett, Shachar and Zhang, Jiapeng},
  title =	{{Sunflowers and Quasi-Sunflowers from Randomness Extractors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{51:1--51:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.51},
  URN =		{urn:nbn:de:0030-drops-94555},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.51},
  annote =	{Keywords: Sunflower conjecture, Quasi-sunflowers, Randomness Extractors}
}
Document
A Tight Lower Bound for Entropy Flattening

Authors: Yi-Hsiu Chen, Mika Göös, Salil P. Vadhan, and Jiapeng Zhang

Published in: LIPIcs, Volume 102, 33rd Computational Complexity Conference (CCC 2018)


Abstract
We study entropy flattening: Given a circuit C_X implicitly describing an n-bit source X (namely, X is the output of C_X on a uniform random input), construct another circuit C_Y describing a source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon entropy of Y is monotonically related to that of X. The standard solution is to have C_Y evaluate C_X altogether Theta(n^2) times on independent inputs and concatenate the results (correctness follows from the asymptotic equipartition property). In this paper, we show that this is optimal among black-box constructions: Any circuit C_Y for entropy flattening that repeatedly queries C_X as an oracle requires Omega(n^2) queries. Entropy flattening is a component used in the constructions of pseudorandom generators and other cryptographic primitives from one-way functions [Johan Håstad et al., 1999; John Rompel, 1990; Thomas Holenstein, 2006; Iftach Haitner et al., 2006; Iftach Haitner et al., 2009; Iftach Haitner et al., 2013; Iftach Haitner et al., 2010; Salil P. Vadhan and Colin Jia Zheng, 2012]. It is also used in reductions between problems complete for statistical zero-knowledge [Tatsuaki Okamoto, 2000; Amit Sahai and Salil P. Vadhan, 1997; Oded Goldreich et al., 1999; Vadhan, 1999]. The Theta(n^2) query complexity is often the main efficiency bottleneck. Our lower bound can be viewed as a step towards proving that the current best construction of pseudorandom generator from arbitrary one-way functions by Vadhan and Zheng (STOC 2012) has optimal efficiency.

Cite as

Yi-Hsiu Chen, Mika Göös, Salil P. Vadhan, and Jiapeng Zhang. A Tight Lower Bound for Entropy Flattening. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 23:1-23:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CCC.2018.23,
  author =	{Chen, Yi-Hsiu and G\"{o}\"{o}s, Mika and Vadhan, Salil P. and Zhang, Jiapeng},
  title =	{{A Tight Lower Bound for Entropy Flattening}},
  booktitle =	{33rd Computational Complexity Conference (CCC 2018)},
  pages =	{23:1--23:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-069-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{102},
  editor =	{Servedio, Rocco A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.23},
  URN =		{urn:nbn:de:0030-drops-88669},
  doi =		{10.4230/LIPIcs.CCC.2018.23},
  annote =	{Keywords: Entropy, One-way function}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail