Search Results

Documents authored by van Goethem, Arthur


Document
Harmonious Simplification of Isolines

Authors: Arthur van Goethem, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann

Published in: LIPIcs, Volume 208, 11th International Conference on Geographic Information Science (GIScience 2021) - Part II


Abstract
Current techniques for simplification focus on reducing complexity while maintaining the geometric similarity to the input. For isolines that jointly describe a scalar field, however, we postulate that geometric similarity of each isoline separately is not sufficient. Rather, we need to maintain the harmony between these isolines to make them visually relate and describe the structures of the underlying terrain. Based on principles of manual cartography, we propose an algorithm for simplifying isolines while considering harmony explicitly. Our preliminary visual and quantitative results suggest that our algorithm is effective.

Cite as

Arthur van Goethem, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Harmonious Simplification of Isolines. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vangoethem_et_al:LIPIcs.GIScience.2021.II.8,
  author =	{van Goethem, Arthur and Meulemans, Wouter and Reimer, Andreas and Speckmann, Bettina},
  title =	{{Harmonious Simplification of Isolines}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part II},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-208-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{208},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.II.8},
  URN =		{urn:nbn:de:0030-drops-147675},
  doi =		{10.4230/LIPIcs.GIScience.2021.II.8},
  annote =	{Keywords: Simplification, isolines, harmony}
}
Document
Competitive Searching for a Line on a Line Arrangement

Authors: Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, and Wouter Meulemans

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We discuss the problem of searching for an unknown line on a known or unknown line arrangement by a searcher S, and show that a search strategy exists that finds the line competitively, that is, with detour factor at most a constant when compared to the situation where S has all knowledge. In the case where S knows all lines but not which one is sought, the strategy is 79-competitive. We also show that it may be necessary to travel on Omega(n) lines to realize a constant competitive ratio. In the case where initially, S does not know any line, but learns about the ones it encounters during the search, we give a 414.2-competitive search strategy.

Cite as

Quirijn Bouts, Thom Castermans, Arthur van Goethem, Marc van Kreveld, and Wouter Meulemans. Competitive Searching for a Line on a Line Arrangement. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 49:1-49:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bouts_et_al:LIPIcs.ISAAC.2018.49,
  author =	{Bouts, Quirijn and Castermans, Thom and van Goethem, Arthur and van Kreveld, Marc and Meulemans, Wouter},
  title =	{{Competitive Searching for a Line on a Line Arrangement}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{49:1--49:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.49},
  URN =		{urn:nbn:de:0030-drops-99970},
  doi =		{10.4230/LIPIcs.ISAAC.2018.49},
  annote =	{Keywords: Competitive searching, line arrangement, detour factor, search strategy}
}
Document
Optimal Morphs of Planar Orthogonal Drawings

Authors: Arthur van Goethem and Kevin Verbeek

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We describe an algorithm that morphs between two planar orthogonal drawings Gamma_I and Gamma_O of a connected graph G, while preserving planarity and orthogonality. Necessarily Gamma_I and Gamma_O share the same combinatorial embedding. Our morph uses a linear number of linear morphs (linear interpolations between two drawings) and preserves linear complexity throughout the process, thereby answering an open question from Biedl et al. [Biedl et al., 2013]. Our algorithm first unifies the two drawings to ensure an equal number of (virtual) bends on each edge. We then interpret bends as vertices which form obstacles for so-called wires: horizontal and vertical lines separating the vertices of Gamma_O. We can find corresponding wires in Gamma_I that share topological properties with the wires in Gamma_O. The structural difference between the two drawings can be captured by the spirality of the wires in Gamma_I, which guides our morph from Gamma_I to Gamma_O.

Cite as

Arthur van Goethem and Kevin Verbeek. Optimal Morphs of Planar Orthogonal Drawings. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{vangoethem_et_al:LIPIcs.SoCG.2018.42,
  author =	{van Goethem, Arthur and Verbeek, Kevin},
  title =	{{Optimal Morphs of Planar Orthogonal Drawings}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{42:1--42:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.42},
  URN =		{urn:nbn:de:0030-drops-87550},
  doi =		{10.4230/LIPIcs.SoCG.2018.42},
  annote =	{Keywords: Homotopy, Morphing, Orthogonal drawing, Spirality}
}
Document
Grouping Time-Varying Data for Interactive Exploration

Authors: Arthur van Goethem, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank Staals

Published in: LIPIcs, Volume 51, 32nd International Symposium on Computational Geometry (SoCG 2016)


Abstract
We present algorithms and data structures that support the interactive analysis of the grouping structure of one-, two-, or higher-dimensional time-varying data while varying all defining parameters. Grouping structures characterise important patterns in the temporal evaluation of sets of time-varying data. We follow Buchin et al. [JoCG 2015] who define groups using three parameters: group-size, group-duration, and inter-entity distance. We give upper and lower bounds on the number of maximal groups over all parameter values, and show how to compute them efficiently. Furthermore, we describe data structures that can report changes in the set of maximal groups in an output-sensitive manner. Our results hold in R^d for fixed d.

Cite as

Arthur van Goethem, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank Staals. Grouping Time-Varying Data for Interactive Exploration. In 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 51, pp. 61:1-61:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{vangoethem_et_al:LIPIcs.SoCG.2016.61,
  author =	{van Goethem, Arthur and van Kreveld, Marc and L\"{o}ffler, Maarten and Speckmann, Bettina and Staals, Frank},
  title =	{{Grouping Time-Varying Data for Interactive Exploration}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{61:1--61:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{Fekete, S\'{a}ndor and Lubiw, Anna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2016.61},
  URN =		{urn:nbn:de:0030-drops-59539},
  doi =		{10.4230/LIPIcs.SoCG.2016.61},
  annote =	{Keywords: Trajectory, Time series, Moving entity, Grouping, Algorithm, Data structure}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail