3 Search Results for "Deng, Xiaotie"


Document
Consensus Division in an Arbitrary Ratio

Authors: Paul Goldberg and Jiawei Li

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We consider the problem of partitioning a line segment into two subsets, so that n finite measures all have the same ratio of values for the subsets. Letting α ∈ [0,1] denote the desired ratio, this generalises the PPA-complete consensus-halving problem, in which α = 1/2. Stromquist and Woodall [Stromquist and Woodall, 1985] showed that for any α, there exists a solution using 2n cuts of the segment. They also showed that if α is irrational, that upper bound is almost optimal. In this work, we elaborate the bounds for rational values α. For α = 𝓁/k, we show a lower bound of (k-1)/k ⋅ 2n - O(1) cuts; we also obtain almost matching upper bounds for a large subset of rational α. On the computational side, we explore its dependence on the number of cuts available. More specifically, 1) when using the minimal number of cuts for each instance is required, the problem is NP-hard for any α; 2) for a large subset of rational α = 𝓁/k, when (k-1)/k ⋅ 2n cuts are available, the problem is in PPA-k under Turing reduction; 3) when 2n cuts are allowed, the problem belongs to PPA for any α; more generally, the problem belong to PPA-p for any prime p if 2(p-1)⋅⌈p/2⌉/⌊p/2⌋ ⋅ n cuts are available.

Cite as

Paul Goldberg and Jiawei Li. Consensus Division in an Arbitrary Ratio. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{goldberg_et_al:LIPIcs.ITCS.2023.57,
  author =	{Goldberg, Paul and Li, Jiawei},
  title =	{{Consensus Division in an Arbitrary Ratio}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.57},
  URN =		{urn:nbn:de:0030-drops-175606},
  doi =		{10.4230/LIPIcs.ITCS.2023.57},
  annote =	{Keywords: Consensus Halving, TFNP, PPA-k, Necklace Splitting}
}
Document
Smoothed and Average-Case Approximation Ratios of Mechanisms: Beyond the Worst-Case Analysis

Authors: Xiaotie Deng, Yansong Gao, and Jie Zhang

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
The approximation ratio has become one of the dominant measures in mechanism design problems. In light of analysis of algorithms, we define the smoothed approximation ratio to compare the performance of the optimal mechanism and a truthful mechanism when the inputs are subject to random perturbations of the worst-case inputs, and define the average-case approximation ratio to compare the performance of these two mechanisms when the inputs follow a distribution. For the one-sided matching problem, Filos-Ratsikas et al. [2014] show that, amongst all truthful mechanisms, random priority achieves the tight approximation ratio bound of Theta(sqrt{n}). We prove that, despite of this worst-case bound, random priority has a constant smoothed approximation ratio. This is, to our limited knowledge, the first work that asymptotically differentiates the smoothed approximation ratio from the worst-case approximation ratio for mechanism design problems. For the average-case, we show that our approximation ratio can be improved to 1+e. These results partially explain why random priority has been successfully used in practice, although in the worst case the optimal social welfare is Theta(sqrt{n}) times of what random priority achieves. These results also pave the way for further studies of smoothed and average-case analysis for approximate mechanism design problems, beyond the worst-case analysis.

Cite as

Xiaotie Deng, Yansong Gao, and Jie Zhang. Smoothed and Average-Case Approximation Ratios of Mechanisms: Beyond the Worst-Case Analysis. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 16:1-16:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.MFCS.2017.16,
  author =	{Deng, Xiaotie and Gao, Yansong and Zhang, Jie},
  title =	{{Smoothed and Average-Case Approximation Ratios of Mechanisms: Beyond the Worst-Case Analysis}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{16:1--16:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.16},
  URN =		{urn:nbn:de:0030-drops-80936},
  doi =		{10.4230/LIPIcs.MFCS.2017.16},
  annote =	{Keywords: mechanism design, approximation ratio, smoothed analysis, average-case analysis}
}
Document
Understanding PPA-Completeness

Authors: Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
We consider the problem of finding a fully colored base triangle on the 2-dimensional Möbius band under the standard boundary condition, proving it to be PPA-complete. The proof is based on a construction for the DPZP problem, that of finding a zero point under a discrete version of continuity condition. It further derives PPA-completeness for versions on the Möbius band of other related discrete fixed point type problems, and a special version of the Tucker problem, finding an edge such that if the value of one end vertex is x, the other is -x, given a special anti-symmetry boundary condition. More generally, this applies to other non-orientable spaces, including the projective plane and the Klein bottle. However, since those models have a closed boundary, we rely on a version of the PPA that states it as to find another fixed point giving a fixed point. This model also makes it presentationally simple for an extension to a high dimensional discrete fixed point problem on a non-orientable (nearly) hyper-grid with a constant side length.

Cite as

Xiaotie Deng, Jack R. Edmonds, Zhe Feng, Zhengyang Liu, Qi Qi, and Zeying Xu. Understanding PPA-Completeness. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 23:1-23:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{deng_et_al:LIPIcs.CCC.2016.23,
  author =	{Deng, Xiaotie and Edmonds, Jack R. and Feng, Zhe and Liu, Zhengyang and Qi, Qi and Xu, Zeying},
  title =	{{Understanding PPA-Completeness}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{23:1--23:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.23},
  URN =		{urn:nbn:de:0030-drops-58310},
  doi =		{10.4230/LIPIcs.CCC.2016.23},
  annote =	{Keywords: Fixed Point Computation, PPA-Completeness}
}
  • Refine by Author
  • 2 Deng, Xiaotie
  • 1 Edmonds, Jack R.
  • 1 Feng, Zhe
  • 1 Gao, Yansong
  • 1 Goldberg, Paul
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Consensus Halving
  • 1 Fixed Point Computation
  • 1 Necklace Splitting
  • 1 PPA-Completeness
  • 1 PPA-k
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail