2 Search Results for "Freudenberg, Markus"


Document
Resource Paper
Whelk: An OWL EL+RL Reasoner Enabling New Use Cases

Authors: James P. Balhoff and Christopher J. Mungall

Published in: TGDK, Volume 2, Issue 2 (2024): Special Issue on Resources for Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 2, Issue 2


Abstract
Many tasks in the biosciences rely on reasoning with large OWL terminologies (Tboxes), often combined with even larger databases. In particular, a common task is retrieval queries that utilize relational expressions; for example, “find all genes expressed in the brain or any part of the brain”. Automated reasoning on these ontologies typically relies on scalable reasoners targeting the EL subset of OWL, such as ELK. While the introduction of ELK has been transformative in the incorporation of reasoning into bio-ontology quality control and production pipelines, we have encountered limitations when applying it to use cases involving high throughput query answering or reasoning about datasets describing instances (Aboxes). Whelk is a fast OWL reasoner for combined EL+RL reasoning. As such, it is particularly useful for many biological ontology tasks, particularly those characterized by large Tboxes using the EL subset of OWL, combined with Aboxes targeting the RL subset of OWL. Whelk is implemented in Scala and utilizes immutable functional data structures, which provides advantages when performing incremental or dynamic reasoning tasks. Whelk supports querying complex class expressions at a substantially greater rate than ELK, and can answer queries or perform incremental reasoning tasks in parallel, enabling novel applications of OWL reasoning.

Cite as

James P. Balhoff and Christopher J. Mungall. Whelk: An OWL EL+RL Reasoner Enabling New Use Cases. In Special Issue on Resources for Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 2, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{balhoff_et_al:TGDK.2.2.7,
  author =	{Balhoff, James P. and Mungall, Christopher J.},
  title =	{{Whelk: An OWL EL+RL Reasoner Enabling New Use Cases}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{7:1--7:17},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.2.7},
  URN =		{urn:nbn:de:0030-drops-225918},
  doi =		{10.4230/TGDK.2.2.7},
  annote =	{Keywords: Web Ontology Language, OWL, Semantic Web, ontology, reasoner}
}
Document
Short Paper
Interlinking SciGraph and DBpedia Datasets Using Link Discovery and Named Entity Recognition Techniques

Authors: Beyza Yaman, Michele Pasin, and Markus Freudenberg

Published in: OASIcs, Volume 70, 2nd Conference on Language, Data and Knowledge (LDK 2019)


Abstract
In recent years we have seen a proliferation of Linked Open Data (LOD) compliant datasets becoming available on the web, leading to an increased number of opportunities for data consumers to build smarter applications which integrate data coming from disparate sources. However, often the integration is not easily achievable since it requires discovering and expressing associations across heterogeneous data sets. The goal of this work is to increase the discoverability and reusability of the scholarly data by integrating them to highly interlinked datasets in the LOD cloud. In order to do so we applied techniques that a) improve the identity resolution across these two sources using Link Discovery for the structured data (i.e. by annotating Springer Nature (SN) SciGraph entities with links to DBpedia entities), and b) enriching SN SciGraph unstructured text content (document abstracts) with links to DBpedia entities using Named Entity Recognition (NER). We published the results of this work using standard vocabularies and provided an interactive exploration tool which presents the discovered links w.r.t. the breadth and depth of the DBpedia classes.

Cite as

Beyza Yaman, Michele Pasin, and Markus Freudenberg. Interlinking SciGraph and DBpedia Datasets Using Link Discovery and Named Entity Recognition Techniques. In 2nd Conference on Language, Data and Knowledge (LDK 2019). Open Access Series in Informatics (OASIcs), Volume 70, pp. 15:1-15:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{yaman_et_al:OASIcs.LDK.2019.15,
  author =	{Yaman, Beyza and Pasin, Michele and Freudenberg, Markus},
  title =	{{Interlinking SciGraph and DBpedia Datasets Using Link Discovery and Named Entity Recognition Techniques}},
  booktitle =	{2nd Conference on Language, Data and Knowledge (LDK 2019)},
  pages =	{15:1--15:8},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-105-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{70},
  editor =	{Eskevich, Maria and de Melo, Gerard and F\"{a}th, Christian and McCrae, John P. and Buitelaar, Paul and Chiarcos, Christian and Klimek, Bettina and Dojchinovski, Milan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2019.15},
  URN =		{urn:nbn:de:0030-drops-103791},
  doi =		{10.4230/OASIcs.LDK.2019.15},
  annote =	{Keywords: Linked Data, Named Entity Recognition, Link Discovery, Interlinking}
}
  • Refine by Type
  • 2 Document/PDF
  • 1 Document/HTML

  • Refine by Publication Year
  • 1 2024
  • 1 2019

  • Refine by Author
  • 1 Balhoff, James P.
  • 1 Freudenberg, Markus
  • 1 Mungall, Christopher J.
  • 1 Pasin, Michele
  • 1 Yaman, Beyza

  • Refine by Series/Journal
  • 1 OASIcs
  • 1 TGDK

  • Refine by Classification
  • 1 Applied computing → Life and medical sciences
  • 1 Computing methodologies → Natural language processing
  • 1 Information systems → Entity resolution
  • 1 Information systems → Semantic web description languages
  • 1 Information systems → Web Ontology Language (OWL)
  • Show More...

  • Refine by Keyword
  • 1 Interlinking
  • 1 Link Discovery
  • 1 Linked Data
  • 1 Named Entity Recognition
  • 1 OWL
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail