12 Search Results for "Gilles, Olivier"


Document
On the Origins of Coccinelle

Authors: Julia Lawall

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Coccinelle is a program-transformation system for C code. It has been under development since 2005 and has been extensively used on the Linux kernel. The design of Coccinelle was inspired in part by the author’s previous experience in using Stratego/XT, developed by Eelco Visser. This paper reflects on some of Coccinelle’s design choices and their relation to Eelco Visser’s work.

Cite as

Julia Lawall. On the Origins of Coccinelle. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 18:1-18:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lawall:OASIcs.EVCS.2023.18,
  author =	{Lawall, Julia},
  title =	{{On the Origins of Coccinelle}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{18:1--18:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.18},
  URN =		{urn:nbn:de:0030-drops-177884},
  doi =		{10.4230/OASIcs.EVCS.2023.18},
  annote =	{Keywords: Linux kernel, Coccinelle, Stratego/XT, program transformation}
}
Document
Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model

Authors: Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

Published in: LIPIcs, Volume 166, 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
Reactive programming is a programming paradigm whereby programs are internally represented by a dependency graph, which is used to automatically (re)compute parts of a program whenever its input changes. In practice reactive programming can only be used for some parts of an application: a reactive program is usually embedded in an application that is still written in ordinary imperative languages such as JavaScript or Scala. In this paper we investigate this embedding and we distill "the awkward squad for reactive programming" as 3 concerns that are essential for real-world software development, but that do not fit within reactive programming. They are related to long lasting computations, side-effects, and the coordination between imperative and reactive code. To solve these issues we design a new programming model called the Actor-Reactor Model in which programs are split up in a number of actors and reactors. Actors and reactors enforce a strict separation of imperative and reactive code, and they can be composed via a number of composition operators that make use of data streams. We demonstrate the model via our own implementation in a language called Stella.

Cite as

Sam Van den Vonder, Thierry Renaux, Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter. Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model. In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 166, pp. 19:1-19:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{vandenvonder_et_al:LIPIcs.ECOOP.2020.19,
  author =	{Van den Vonder, Sam and Renaux, Thierry and Oeyen, Bjarno and De Koster, Joeri and De Meuter, Wolfgang},
  title =	{{Tackling the Awkward Squad for Reactive Programming: The Actor-Reactor Model}},
  booktitle =	{34th European Conference on Object-Oriented Programming (ECOOP 2020)},
  pages =	{19:1--19:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-154-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{166},
  editor =	{Hirschfeld, Robert and Pape, Tobias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.19},
  URN =		{urn:nbn:de:0030-drops-131768},
  doi =		{10.4230/LIPIcs.ECOOP.2020.19},
  annote =	{Keywords: functional reactive programming, reactive programming, reactive streams, actors, reactors}
}
Document
Ornaments for Proof Reuse in Coq

Authors: Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Ornaments express relations between inductive types with the same inductive structure. We implement fully automatic proof reuse for a particular class of ornaments in a Coq plugin, and show how such a tool can give programmers the rewards of using indexed inductive types while automating away many of the costs. The plugin works directly on Coq code; it is the first ornamentation tool for a non-embedded dependently typed language. It is also the first tool to automatically identify ornaments: To lift a function or proof, the user must provide only the source type, the destination type, and the source function or proof. In taking advantage of the mathematical properties of ornaments, our approach produces faster functions and smaller terms than a more general approach to proof reuse in Coq.

Cite as

Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for Proof Reuse in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ringer_et_al:LIPIcs.ITP.2019.26,
  author =	{Ringer, Talia and Yazdani, Nathaniel and Leo, John and Grossman, Dan},
  title =	{{Ornaments for Proof Reuse in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.26},
  URN =		{urn:nbn:de:0030-drops-110816},
  doi =		{10.4230/LIPIcs.ITP.2019.26},
  annote =	{Keywords: ornaments, proof reuse, proof automation}
}
Document
Scopes and Frames Improve Meta-Interpreter Specialization

Authors: Vlad Vergu, Andrew Tolmach, and Eelco Visser

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
DynSem is a domain-specific language for concise specification of the dynamic semantics of programming languages, aimed at rapid experimentation and evolution of language designs. To maintain a short definition-to-execution cycle, DynSem specifications are meta-interpreted. Meta-interpretation introduces runtime overhead that is difficult to remove by using interpreter optimization frameworks such as the Truffle/Graal Java tools; previous work has shown order-of-magnitude improvements from applying Truffle/Graal to a meta-interpreter, but this is still far slower than what can be achieved with a language-specific interpreter. In this paper, we show how specifying the meta-interpreter using scope graphs, which encapsulate static name binding and resolution information, produces much better optimization results from Truffle/Graal. Furthermore, we identify that JIT compilation is hindered by large numbers of calls between small polymorphic rules and we introduce rule cloning to derive larger monomorphic rules at run time as a countermeasure. Our contributions improve the performance of DynSem-derived interpreters to within an order of magnitude of a handwritten language-specific interpreter.

Cite as

Vlad Vergu, Andrew Tolmach, and Eelco Visser. Scopes and Frames Improve Meta-Interpreter Specialization. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{vergu_et_al:LIPIcs.ECOOP.2019.4,
  author =	{Vergu, Vlad and Tolmach, Andrew and Visser, Eelco},
  title =	{{Scopes and Frames Improve Meta-Interpreter Specialization}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{4:1--4:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.4},
  URN =		{urn:nbn:de:0030-drops-107969},
  doi =		{10.4230/LIPIcs.ECOOP.2019.4},
  annote =	{Keywords: Definitional interpreters, partial evaluation}
}
Document
Short Paper
Diversity in Spatial Language Within Communities: The Interplay of Culture, Language and Landscape in Representations of Space (Short Paper)

Authors: Bill Palmer, Alice Gaby, Jonathon Lum, and Jonathan Schlossberg

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
Significant diversity exists in the way languages structure spatial reference, and this has been shown to correlate with diversity in non-linguistic spatial behaviour. However, most research in spatial language has focused on diversity between languages: on which spatial referential strategies are represented in the grammar, and to a lesser extent which of these strategies are preferred overall in a given language. However, comparing languages as a whole and treating each language as a single data point provides a very partial picture of linguistic spatial behaviour, failing to recognise the very significant diversity that exists within languages, a largely under-investigated but now emerging field of research. This paper focuses on language-internal diversity, and on the central role of a range of sociocultural and demographic factors that intervene in the relationship between humans, languages, and the physical environments in which communities live.

Cite as

Bill Palmer, Alice Gaby, Jonathon Lum, and Jonathan Schlossberg. Diversity in Spatial Language Within Communities: The Interplay of Culture, Language and Landscape in Representations of Space (Short Paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 53:1-53:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{palmer_et_al:LIPIcs.GISCIENCE.2018.53,
  author =	{Palmer, Bill and Gaby, Alice and Lum, Jonathon and Schlossberg, Jonathan},
  title =	{{Diversity in Spatial Language Within Communities: The Interplay of Culture, Language and Landscape in Representations of Space}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{53:1--53:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.53},
  URN =		{urn:nbn:de:0030-drops-93810},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.53},
  annote =	{Keywords: spatial language, Frame of Reference, landscape, sociotopography}
}
Document
Typeful Normalization by Evaluation

Authors: Olivier Danvy, Chantal Keller, and Matthias Puech

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
We present the first typeful implementation of Normalization by Evaluation for the simply typed lambda-calculus with sums and control operators: we guarantee type preservation and eta-long (modulo commuting conversions), beta-normal forms using only Generalized Algebraic Data Types in a general-purpose programming language, here OCaml; and we account for sums and control operators with Continuation-Passing Style. First, we implement the standard NbE algorithm for the implicational fragment in a typeful way that is correct by construction. We then derive its call-by-value continuation-passing counterpart, that maps a lambda-term with sums and call/cc into a CPS term in normal form, which we express in a typed dedicated syntax. Beyond showcasing the expressive power of GADTs, we emphasize that type inference gives a smooth way to re-derive the encodings of the syntax and typing of normal forms in Continuation-Passing Style.

Cite as

Olivier Danvy, Chantal Keller, and Matthias Puech. Typeful Normalization by Evaluation. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 72-88, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{danvy_et_al:LIPIcs.TYPES.2014.72,
  author =	{Danvy, Olivier and Keller, Chantal and Puech, Matthias},
  title =	{{Typeful Normalization by Evaluation}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{72--88},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.72},
  URN =		{urn:nbn:de:0030-drops-54921},
  doi =		{10.4230/LIPIcs.TYPES.2014.72},
  annote =	{Keywords: Normalization by Evaluation, Generalized Algebraic Data Types, Continuation-Passing Style, partial evaluation}
}
Document
Objects and Subtyping in the Lambda-Pi-Calculus Modulo

Authors: Raphaël Cauderlier and Catherine Dubois

Published in: LIPIcs, Volume 39, 20th International Conference on Types for Proofs and Programs (TYPES 2014)


Abstract
We present a shallow embedding of the Object Calculus of Abadi and Cardelli in the lambda-Pi-calculus modulo, an extension of the lambda-Pi-calculus with rewriting. This embedding may be used as an example of translation of subtyping. We prove this embedding correct with respect to the operational semantics and the type system of the Object Calculus. We implemented a translation tool from the Object Calculus to Dedukti, a type-checker for the lambda-Pi-calculus modulo.

Cite as

Raphaël Cauderlier and Catherine Dubois. Objects and Subtyping in the Lambda-Pi-Calculus Modulo. In 20th International Conference on Types for Proofs and Programs (TYPES 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 39, pp. 47-71, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{cauderlier_et_al:LIPIcs.TYPES.2014.47,
  author =	{Cauderlier, Rapha\"{e}l and Dubois, Catherine},
  title =	{{Objects and Subtyping in the Lambda-Pi-Calculus Modulo}},
  booktitle =	{20th International Conference on Types for Proofs and Programs (TYPES 2014)},
  pages =	{47--71},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-88-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{39},
  editor =	{Herbelin, Hugo and Letouzey, Pierre and Sozeau, Matthieu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2014.47},
  URN =		{urn:nbn:de:0030-drops-54919},
  doi =		{10.4230/LIPIcs.TYPES.2014.47},
  annote =	{Keywords: object, calculus, encoding, dependent type, rewrite system}
}
Document
TreatJS: Higher-Order Contracts for JavaScripts

Authors: Matthias Keil and Peter Thiemann

Published in: LIPIcs, Volume 37, 29th European Conference on Object-Oriented Programming (ECOOP 2015)


Abstract
TreatJS is a language embedded, higher-order contract system for JavaScript which enforces contracts by run-time monitoring. Beyond providing the standard abstractions for building higher-order contracts (base, function, and object contracts), TreatJS's novel contributions are its guarantee of non-interfering contract execution, its systematic approach to blame assignment, its support for contracts in the style of union and intersection types, and its notion of a parameterized contract scope, which is the building block for composable run-time generated contracts that generalize dependent function contracts. TreatJS is implemented as a library so that all aspects of a contract can be specified using the full JavaScript language. The library relies on JavaScript proxies to guarantee full interposition for contracts. It further exploits JavaScript's reflective features to run contracts in a sandbox environment, which guarantees that the execution of contract code does not modify the application state. No source code transformation or change in the JavaScript run-time system is required. The impact of contracts on execution speed is evaluated using the Google Octane benchmark.

Cite as

Matthias Keil and Peter Thiemann. TreatJS: Higher-Order Contracts for JavaScripts. In 29th European Conference on Object-Oriented Programming (ECOOP 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 37, pp. 28-51, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{keil_et_al:LIPIcs.ECOOP.2015.28,
  author =	{Keil, Matthias and Thiemann, Peter},
  title =	{{TreatJS: Higher-Order Contracts for JavaScripts}},
  booktitle =	{29th European Conference on Object-Oriented Programming (ECOOP 2015)},
  pages =	{28--51},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-86-6},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{37},
  editor =	{Boyland, John Tang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2015.28},
  URN =		{urn:nbn:de:0030-drops-52164},
  doi =		{10.4230/LIPIcs.ECOOP.2015.28},
  annote =	{Keywords: Higher-Order Contracts, JavaScript, Proxies}
}
Document
Type Inference for Place-Oblivious Objects

Authors: Riyaz Haque and Jens Palsberg

Published in: LIPIcs, Volume 37, 29th European Conference on Object-Oriented Programming (ECOOP 2015)


Abstract
In a distributed system, access to local data is much faster than access to remote data. As a help to programmers, some languages require every access to be local. A program in those languages can access remote data via first a shift of the place of computation and then a local access. To enforce this discipline, researchers have presented type systems that determine whether every access is local and every place shift is appropriate. However, those type systems fall short of handling a common programming pattern that we call place-oblivious objects. Such objects safely access other objects without knowledge of their place. In response, we present the first type system for place-oblivious objects along with an efficient inference algorithm and a proof that inference is P-complete. Our example language extends the Abadi-Cardelli object calculus with place shift and existential types, and our implementation has inferred types for some microbenchmarks.

Cite as

Riyaz Haque and Jens Palsberg. Type Inference for Place-Oblivious Objects. In 29th European Conference on Object-Oriented Programming (ECOOP 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 37, pp. 371-395, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{haque_et_al:LIPIcs.ECOOP.2015.371,
  author =	{Haque, Riyaz and Palsberg, Jens},
  title =	{{Type Inference for Place-Oblivious Objects}},
  booktitle =	{29th European Conference on Object-Oriented Programming (ECOOP 2015)},
  pages =	{371--395},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-86-6},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{37},
  editor =	{Boyland, John Tang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2015.371},
  URN =		{urn:nbn:de:0030-drops-52223},
  doi =		{10.4230/LIPIcs.ECOOP.2015.371},
  annote =	{Keywords: parallelism, locality, types}
}
Document
DynSem: A DSL for Dynamic Semantics Specification

Authors: Vlad Vergu, Pierre Neron, and Eelco Visser

Published in: LIPIcs, Volume 36, 26th International Conference on Rewriting Techniques and Applications (RTA 2015)


Abstract
The formal semantics of a programming language and its implementation are typically separately defined, with the risk of divergence such that properties of the formal semantics are not properties of the implementation. In this paper, we present DynSem, a domain-specific language for the specification of the dynamic semantics of programming languages that aims at supporting both formal reasoning and efficient interpretation. DynSem supports the specification of the operational semantics of a language by means of statically typed conditional term reduction rules. DynSem supports concise specification of reduction rules by providing implicit build and match coercions based on reduction arrows and implicit term constructors. DynSem supports modular specification by adopting implicit propagation of semantic components from I-MSOS, which allows omitting propagation of components such as environments and stores from rules that do not affect those. DynSem supports the declaration of native operators for delegation of aspects of the semantics to an external definition or implementation. DynSem supports the definition of auxiliary meta-functions, which can be expressed using regular reduction rules and are subject to semantic component propagation. DynSem specifications are executable through automatic generation of a Java-based AST interpreter.

Cite as

Vlad Vergu, Pierre Neron, and Eelco Visser. DynSem: A DSL for Dynamic Semantics Specification. In 26th International Conference on Rewriting Techniques and Applications (RTA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 36, pp. 365-378, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{vergu_et_al:LIPIcs.RTA.2015.365,
  author =	{Vergu, Vlad and Neron, Pierre and Visser, Eelco},
  title =	{{DynSem: A DSL for Dynamic Semantics Specification}},
  booktitle =	{26th International Conference on Rewriting Techniques and Applications (RTA 2015)},
  pages =	{365--378},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-85-9},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{36},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2015.365},
  URN =		{urn:nbn:de:0030-drops-52080},
  doi =		{10.4230/LIPIcs.RTA.2015.365},
  annote =	{Keywords: programming languages, dynamic semantics, reduction semantics, semantics engineering, IDE, interpreters, modularity}
}
Document
Quantum Communication Complexity with Coherent States and Linear Optics

Authors: Juan Miguel Arrazola and Norbert Lütkenhaus

Published in: LIPIcs, Volume 27, 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)


Abstract
We introduce a general mapping for encoding quantum communication protocols involving pure states of multiple qubits, unitary transformations, and projective measurements into another set of protocols that employ coherent states of light in a superposition of optical modes, linear optics transformations and measurements with single-photon threshold detectors. This provides a general framework for transforming a wide class of protocols in quantum communication into a form in which they can be implemented with current technology. In particular, we apply the mapping to quantum communication complexity, providing general conditions under which quantum protocols can be implemented with coherent states and linear optics while retaining exponential separations in communication complexity compared to the classical case. Finally, we make use of our results to construct a protocol for the Hidden Matching problem that retains the known exponential gap between quantum and classical one-way communication complexity.

Cite as

Juan Miguel Arrazola and Norbert Lütkenhaus. Quantum Communication Complexity with Coherent States and Linear Optics. In 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 27, pp. 36-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{arrazola_et_al:LIPIcs.TQC.2014.36,
  author =	{Arrazola, Juan Miguel and L\"{u}tkenhaus, Norbert},
  title =	{{Quantum Communication Complexity with Coherent States and Linear Optics}},
  booktitle =	{9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014)},
  pages =	{36--47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-73-6},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{27},
  editor =	{Flammia, Steven T. and Harrow, Aram W.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2014.36},
  URN =		{urn:nbn:de:0030-drops-48044},
  doi =		{10.4230/LIPIcs.TQC.2014.36},
  annote =	{Keywords: Quantum Communication Complexity, Quantum Optics}
}
Document
Applying WCET Analysis at Architectural Level

Authors: Olivier Gilles and Jérôme Hugues

Published in: OASIcs, Volume 8, 8th International Workshop on Worst-Case Execution Time Analysis (WCET'08) (2008)


Abstract
Real-Time embedded systems must enforce strict timing constraints. In this context, achieving precise Worst Case Execution Time is a prerequisite to apply scheduling analysis and verify system viability. WCET analysis is usually a complex and time-consuming activity. It becomes increasingly complex when one also considers code generation strategies from high-level models. In this paper, we present an experiment made on the coupling of the WCET analysis tool Bound-T and our AADL to code generator OCARINA. We list the different steps to successfully apply WCET analysis directly from model, to limit user intervention.

Cite as

Olivier Gilles and Jérôme Hugues. Applying WCET Analysis at Architectural Level. In 8th International Workshop on Worst-Case Execution Time Analysis (WCET'08). Open Access Series in Informatics (OASIcs), Volume 8, pp. 1-9, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{gilles_et_al:OASIcs.WCET.2008.1665,
  author =	{Gilles, Olivier and Hugues, J\'{e}r\^{o}me},
  title =	{{Applying WCET Analysis at Architectural Level}},
  booktitle =	{8th International Workshop on Worst-Case Execution Time Analysis (WCET'08)},
  pages =	{1--9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-10-1},
  ISSN =	{2190-6807},
  year =	{2008},
  volume =	{8},
  editor =	{Kirner, Raimund},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2008.1665},
  URN =		{urn:nbn:de:0030-drops-16653},
  doi =		{10.4230/OASIcs.WCET.2008.1665},
  annote =	{Keywords: WCET, AADL, Bound-T, Ocarina}
}
  • Refine by Author
  • 2 Vergu, Vlad
  • 2 Visser, Eelco
  • 1 Arrazola, Juan Miguel
  • 1 Cauderlier, Raphaël
  • 1 Danvy, Olivier
  • Show More...

  • Refine by Classification
  • 1 Information systems → Geographic information systems
  • 1 Software and its engineering → Data flow languages
  • 1 Software and its engineering → Formal software verification
  • 1 Software and its engineering → Interpreters
  • 1 Software and its engineering → Multiparadigm languages
  • Show More...

  • Refine by Keyword
  • 2 partial evaluation
  • 1 AADL
  • 1 Bound-T
  • 1 Coccinelle
  • 1 Continuation-Passing Style
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 5 2015
  • 2 2019
  • 1 2008
  • 1 2014
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail