6 Search Results for "Gilles, Olivier"


Document
The Flower Calculus

Authors: Pablo Donato

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects called "flowers", that enjoy both a graphical interpretation as topological diagrams, and a textual presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses completely with the traditional notion of symbolic connective, operating solely on nested flowers containing atomic predicates. We prove both the soundness of the full calculus and the completeness of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is fully invertible, a desirable property for both automated and interactive proof search.

Cite as

Pablo Donato. The Flower Calculus. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 5:1-5:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{donato:LIPIcs.FSCD.2024.5,
  author =	{Donato, Pablo},
  title =	{{The Flower Calculus}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{5:1--5:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.5},
  URN =		{urn:nbn:de:0030-drops-203343},
  doi =		{10.4230/LIPIcs.FSCD.2024.5},
  annote =	{Keywords: deep inference, graphical calculi, existential graphs, intuitionistic logic, Kripke semantics, cut-elimination}
}
Document
A Linear Type System for L^p-Metric Sensitivity Analysis

Authors: Victor Sannier and Patrick Baillot

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
When working in optimisation or privacy protection, one may need to estimate the sensitivity of computer programs, i.e., the maximum multiplicative increase in the distance between two inputs and the corresponding two outputs. In particular, differential privacy is a rigorous and widely used notion of privacy that is closely related to sensitivity. Several type systems for sensitivity and differential privacy based on linear logic have been proposed in the literature, starting with the functional language Fuzz. However, they are either limited to certain metrics (L¹ and L^∞), and thus to the associated privacy mechanisms, or they rely on a complex notion of type contexts that does not interact well with operational semantics. We therefore propose a graded linear type system - inspired by Bunched Fuzz [{w}under et al., 2023] - called Plurimetric Fuzz that handles L^p vector metrics (for 1 ≤ p ≤ +∞), uses standard type contexts, gives reasonable bounds on sensitivity, and has good metatheoretical properties. We also provide a denotational semantics in terms of metric complete partial orders, and translation mappings from and to Fuzz.

Cite as

Victor Sannier and Patrick Baillot. A Linear Type System for L^p-Metric Sensitivity Analysis. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 12:1-12:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sannier_et_al:LIPIcs.FSCD.2024.12,
  author =	{Sannier, Victor and Baillot, Patrick},
  title =	{{A Linear Type System for L^p-Metric Sensitivity Analysis}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{12:1--12:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.12},
  URN =		{urn:nbn:de:0030-drops-203412},
  doi =		{10.4230/LIPIcs.FSCD.2024.12},
  annote =	{Keywords: type system, linear logic, sensitivity, vector metrics, differential privacy, lambda-calculus, functional programming, denotational semantics}
}
Document
Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti

Authors: Thiago Felicissimo and Théo Winterhalter

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Proof assistants such as Coq implement a type theory featuring three important features: impredicativity, cumulativity and product covariance. This combination has proven difficult to be expressed in the logical framework Dedukti, and previous attempts have failed in providing an encoding that is proven confluent, sound and conservative. In this work we solve this longstanding open problem by providing an encoding of these three features that we prove to be confluent, sound and to satisfy a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a contribution by itself, and combines various criteria and proof techniques from rewriting theory. Our proof of soundness also contributes a new strategy in which the result is shown in terms of an inverse translation function, fixing a common flaw made in some previous encoding attempts.

Cite as

Thiago Felicissimo and Théo Winterhalter. Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{felicissimo_et_al:LIPIcs.FSCD.2024.21,
  author =	{Felicissimo, Thiago and Winterhalter, Th\'{e}o},
  title =	{{Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.21},
  URN =		{urn:nbn:de:0030-drops-203503},
  doi =		{10.4230/LIPIcs.FSCD.2024.21},
  annote =	{Keywords: Dedukti, Rewriting, Confluence, Dependent types, Cumulativity, Universes}
}
Document
Mirroring Call-By-Need, or Values Acting Silly

Authors: Beniamino Accattoli and Adrienne Lancelot

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Call-by-need evaluation for the λ-calculus can be seen as merging the best of call-by-name and call-by-value, namely the wise erasing behaviour of the former and the wise duplicating behaviour of the latter. To better understand how duplication and erasure can be combined, we design a degenerated calculus, dubbed call-by-silly, that is symmetric to call-by-need in that it merges the worst of call-by-name and call-by-value, namely silly duplications by-name and silly erasures by-value. We validate the design of the call-by-silly calculus via rewriting properties and multi types. In particular, we mirror the main theorem about call-by-need - that is, its operational equivalence with call-by-name - showing that call-by-silly and call-by-value induce the same contextual equivalence. This fact shows the blindness with respect to efficiency of call-by-value contextual equivalence. We also define a call-by-silly strategy and measure its length via tight multi types. Lastly, we prove that the call-by-silly strategy computes evaluation sequences of maximal length in the calculus.

Cite as

Beniamino Accattoli and Adrienne Lancelot. Mirroring Call-By-Need, or Values Acting Silly. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.23,
  author =	{Accattoli, Beniamino and Lancelot, Adrienne},
  title =	{{Mirroring Call-By-Need, or Values Acting Silly}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.23},
  URN =		{urn:nbn:de:0030-drops-203527},
  doi =		{10.4230/LIPIcs.FSCD.2024.23},
  annote =	{Keywords: Lambda calculus, intersection types, call-by-value, call-by-need}
}
Document
On the Origins of Coccinelle

Authors: Julia Lawall

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
Coccinelle is a program-transformation system for C code. It has been under development since 2005 and has been extensively used on the Linux kernel. The design of Coccinelle was inspired in part by the author’s previous experience in using Stratego/XT, developed by Eelco Visser. This paper reflects on some of Coccinelle’s design choices and their relation to Eelco Visser’s work.

Cite as

Julia Lawall. On the Origins of Coccinelle. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 18:1-18:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lawall:OASIcs.EVCS.2023.18,
  author =	{Lawall, Julia},
  title =	{{On the Origins of Coccinelle}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{18:1--18:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.18},
  URN =		{urn:nbn:de:0030-drops-177884},
  doi =		{10.4230/OASIcs.EVCS.2023.18},
  annote =	{Keywords: Linux kernel, Coccinelle, Stratego/XT, program transformation}
}
Document
Applying WCET Analysis at Architectural Level

Authors: Olivier Gilles and Jérôme Hugues

Published in: OASIcs, Volume 8, 8th International Workshop on Worst-Case Execution Time Analysis (WCET'08) (2008)


Abstract
Real-Time embedded systems must enforce strict timing constraints. In this context, achieving precise Worst Case Execution Time is a prerequisite to apply scheduling analysis and verify system viability. WCET analysis is usually a complex and time-consuming activity. It becomes increasingly complex when one also considers code generation strategies from high-level models. In this paper, we present an experiment made on the coupling of the WCET analysis tool Bound-T and our AADL to code generator OCARINA. We list the different steps to successfully apply WCET analysis directly from model, to limit user intervention.

Cite as

Olivier Gilles and Jérôme Hugues. Applying WCET Analysis at Architectural Level. In 8th International Workshop on Worst-Case Execution Time Analysis (WCET'08). Open Access Series in Informatics (OASIcs), Volume 8, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{gilles_et_al:OASIcs.WCET.2008.1665,
  author =	{Gilles, Olivier and Hugues, J\'{e}r\^{o}me},
  title =	{{Applying WCET Analysis at Architectural Level}},
  booktitle =	{8th International Workshop on Worst-Case Execution Time Analysis (WCET'08)},
  pages =	{1--9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-10-1},
  ISSN =	{2190-6807},
  year =	{2008},
  volume =	{8},
  editor =	{Kirner, Raimund},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2008.1665},
  URN =		{urn:nbn:de:0030-drops-16653},
  doi =		{10.4230/OASIcs.WCET.2008.1665},
  annote =	{Keywords: WCET, AADL, Bound-T, Ocarina}
}
  • Refine by Author
  • 1 Accattoli, Beniamino
  • 1 Baillot, Patrick
  • 1 Donato, Pablo
  • 1 Felicissimo, Thiago
  • 1 Gilles, Olivier
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Type theory
  • 1 Security and privacy → Logic and verification
  • 1 Software and its engineering → Software evolution
  • 1 Theory of computation → Constructive mathematics
  • 1 Theory of computation → Equational logic and rewriting
  • Show More...

  • Refine by Keyword
  • 1 AADL
  • 1 Bound-T
  • 1 Coccinelle
  • 1 Confluence
  • 1 Cumulativity
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 4 2024
  • 1 2008
  • 1 2023