4 Search Results for "Goldstein, Isaac"


Document
On the Hardness of Set Disjointness and Set Intersection with Bounded Universe

Authors: Isaac Goldstein, Moshe Lewenstein, and Ely Porat

Published in: LIPIcs, Volume 149, 30th International Symposium on Algorithms and Computation (ISAAC 2019)


Abstract
In the SetDisjointness problem, a collection of m sets S_1,S_2,...,S_m from some universe U is preprocessed in order to answer queries on the emptiness of the intersection of some two query sets from the collection. In the SetIntersection variant, all the elements in the intersection of the query sets are required to be reported. These are two fundamental problems that were considered in several papers from both the upper bound and lower bound perspective. Several conditional lower bounds for these problems were proven for the tradeoff between preprocessing and query time or the tradeoff between space and query time. Moreover, there are several unconditional hardness results for these problems in some specific computational models. The fundamental nature of the SetDisjointness and SetIntersection problems makes them useful for proving the conditional hardness of other problems from various areas. However, the universe of the elements in the sets may be very large, which may cause the reduction to some other problems to be inefficient and therefore it is not useful for proving their conditional hardness. In this paper, we prove the conditional hardness of SetDisjointness and SetIntersection with bounded universe. This conditional hardness is shown for both the interplay between preprocessing and query time and the interplay between space and query time. Moreover, we present several applications of these new conditional lower bounds. These applications demonstrates the strength of our new conditional lower bounds as they exploit the limited universe size. We believe that this new framework of conditional lower bounds with bounded universe can be useful for further significant applications.

Cite as

Isaac Goldstein, Moshe Lewenstein, and Ely Porat. On the Hardness of Set Disjointness and Set Intersection with Bounded Universe. In 30th International Symposium on Algorithms and Computation (ISAAC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 149, pp. 7:1-7:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{goldstein_et_al:LIPIcs.ISAAC.2019.7,
  author =	{Goldstein, Isaac and Lewenstein, Moshe and Porat, Ely},
  title =	{{On the Hardness of Set Disjointness and Set Intersection with Bounded Universe}},
  booktitle =	{30th International Symposium on Algorithms and Computation (ISAAC 2019)},
  pages =	{7:1--7:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-130-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{149},
  editor =	{Lu, Pinyan and Zhang, Guochuan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.7},
  URN =		{urn:nbn:de:0030-drops-115036},
  doi =		{10.4230/LIPIcs.ISAAC.2019.7},
  annote =	{Keywords: set disjointness, set intersection, 3SUM, space-time tradeoff, conditional lower bounds}
}
Document
Improved Space-Time Tradeoffs for kSUM

Authors: Isaac Goldstein, Moshe Lewenstein, and Ely Porat

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
In the kSUM problem we are given an array of numbers a_1,a_2,...,a_n and we are required to determine if there are k different elements in this array such that their sum is 0. This problem is a parameterized version of the well-studied SUBSET-SUM problem, and a special case is the 3SUM problem that is extensively used for proving conditional hardness. Several works investigated the interplay between time and space in the context of SUBSET-SUM. Recently, improved time-space tradeoffs were proven for kSUM using both randomized and deterministic algorithms. In this paper we obtain an improvement over the best known results for the time-space tradeoff for kSUM. A major ingredient in achieving these results is a general self-reduction from kSUM to mSUM where m<k, and several useful observations that enable this reduction and its implications. The main results we prove in this paper include the following: (i) The best known Las Vegas solution to kSUM running in approximately O(n^{k-delta sqrt{2k}}) time and using O(n^{delta}) space, for 0 <= delta <= 1. (ii) The best known deterministic solution to kSUM running in approximately O(n^{k-delta sqrt{k}}) time and using O(n^{delta}) space, for 0 <= delta <= 1. (iii) A space-time tradeoff for solving kSUM using O(n^{delta}) space, for delta>1. (iv) An algorithm for 6SUM running in O(n^4) time using just O(n^{2/3}) space. (v) A solution to 3SUM on random input using O(n^2) time and O(n^{1/3}) space, under the assumption of a random read-only access to random bits.

Cite as

Isaac Goldstein, Moshe Lewenstein, and Ely Porat. Improved Space-Time Tradeoffs for kSUM. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 37:1-37:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{goldstein_et_al:LIPIcs.ESA.2018.37,
  author =	{Goldstein, Isaac and Lewenstein, Moshe and Porat, Ely},
  title =	{{Improved Space-Time Tradeoffs for kSUM}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{37:1--37:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.37},
  URN =		{urn:nbn:de:0030-drops-95000},
  doi =		{10.4230/LIPIcs.ESA.2018.37},
  annote =	{Keywords: kSUM, space-time tradeoff, self-reduction}
}
Document
Orthogonal Vectors Indexing

Authors: Isaac Goldstein, Moshe Lewenstein, and Ely Porat

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
In the recent years, intensive research work has been dedicated to prove conditional lower bounds in order to reveal the inner structure of the class P. These conditional lower bounds are based on many popular conjectures on well-studied problems. One of the most heavily used conjectures is the celebrated Strong Exponential Time Hypothesis (SETH). It turns out that conditional hardness proved based on SETH goes, in many cases, through an intermediate problem - the Orthogonal Vectors (OV) problem. Almost all research work regarding conditional lower bound was concentrated on time complexity. Very little attention was directed toward space complexity. In a recent work, Goldstein et al.[WADS '17] set the stage for proving conditional lower bounds regarding space and its interplay with time. In this spirit, it is tempting to investigate the space complexity of a data structure variant of OV which is called OV indexing. In this problem n boolean vectors of size clogn are given for preprocessing. As a query, a vector v is given and we are required to verify if there is an input vector that is orthogonal to it or not. This OV indexing problem is interesting in its own, but it also likely to have strong implications on problems known to be conditionally hard, in terms of time complexity, based on OV. Having this in mind, we study OV indexing in this paper from many aspects. We give some space-efficient algorithms for the problem, show a tradeoff between space and query time, describe how to solve its reporting variant, shed light on an interesting connection between this problem and the well-studied SetDisjointness problem and demonstrate how it can be solved more efficiently on random input.

Cite as

Isaac Goldstein, Moshe Lewenstein, and Ely Porat. Orthogonal Vectors Indexing. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 40:1-40:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{goldstein_et_al:LIPIcs.ISAAC.2017.40,
  author =	{Goldstein, Isaac and Lewenstein, Moshe and Porat, Ely},
  title =	{{Orthogonal Vectors Indexing}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{40:1--40:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.40},
  URN =		{urn:nbn:de:0030-drops-82395},
  doi =		{10.4230/LIPIcs.ISAAC.2017.40},
  annote =	{Keywords: SETH, orthogonal vectors, space complexity}
}
Document
How Hard is it to Find (Honest) Witnesses?

Authors: Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
In recent years much effort has been put into developing polynomial-time conditional lower bounds for algorithms and data structures in both static and dynamic settings. Along these lines we introduce a framework for proving conditional lower bounds based on the well-known 3SUM conjecture. Our framework creates a compact representation of an instance of the 3SUM problem using hashing and domain specific encoding. This compact representation admits false solutions to the original 3SUM problem instance which we reveal and eliminate until we find a true solution. In other words, from all witnesses (candidate solutions) we figure out if an honest one (a true solution) exists. This enumeration of witnesses is used to prove conditional lower bounds on reporting problems that generate all witnesses. In turn, these reporting problems are then reduced to various decision problems using special search data structures which are able to enumerate the witnesses while only using solutions to decision variants. Hence, 3SUM-hardness of the decision problems is deduced. We utilize this framework to show conditional lower bounds for several variants of convolutions, matrix multiplication and string problems. Our framework uses a strong connection between all of these problems and the ability to find witnesses. Specifically, we prove conditional lower bounds for computing partial outputs of convolutions and matrix multiplication for sparse inputs. These problems are inspired by the open question raised by Muthukrishnan 20 years ago. The lower bounds we show rule out the possibility (unless the 3SUM conjecture is false) that almost linear time solutions to sparse input-output convolutions or matrix multiplications exist. This is in contrast to standard convolutions and matrix multiplications that have, or assumed to have, almost linear solutions. Moreover, we improve upon the conditional lower bounds of Amir et al. for histogram indexing, a problem that has been of much interest recently. The conditional lower bounds we show apply for both reporting and decision variants. For the well-studied decision variant, we show a full tradeoff between preprocessing and query time for every alphabet size > 2. At an extreme, this implies that no solution to this problem exists with subquadratic preprocessing time and ~O(1) query time for every alphabet size > 2, unless the 3SUM conjecture is false. This is in contrast to a recent result by Chan and Lewenstein for a binary alphabet. While these specific applications are used to demonstrate the techniques of our framework, we believe that this novel framework is useful for many other problems as well.

Cite as

Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. How Hard is it to Find (Honest) Witnesses?. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 45:1-45:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{goldstein_et_al:LIPIcs.ESA.2016.45,
  author =	{Goldstein, Isaac and Kopelowitz, Tsvi and Lewenstein, Moshe and Porat, Ely},
  title =	{{How Hard is it to Find (Honest) Witnesses?}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{45:1--45:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.45},
  URN =		{urn:nbn:de:0030-drops-63575},
  doi =		{10.4230/LIPIcs.ESA.2016.45},
  annote =	{Keywords: 3SUM, convolutions, matrix multiplication, histogram indexing}
}
  • Refine by Author
  • 4 Goldstein, Isaac
  • 4 Lewenstein, Moshe
  • 4 Porat, Ely
  • 1 Kopelowitz, Tsvi

  • Refine by Classification
  • 2 Theory of computation → Design and analysis of algorithms

  • Refine by Keyword
  • 2 3SUM
  • 2 space-time tradeoff
  • 1 SETH
  • 1 conditional lower bounds
  • 1 convolutions
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2016
  • 1 2017
  • 1 2018
  • 1 2019