3 Search Results for "Grout, Logan"


Document
APPROX
Algorithms for 2-Connected Network Design and Flexible Steiner Trees with a Constant Number of Terminals

Authors: Ishan Bansal, Joe Cheriyan, Logan Grout, and Sharat Ibrahimpur

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
The k-Steiner-2NCS problem is as follows: Given a constant (positive integer) k, and an undirected connected graph G = (V,E), non-negative costs c on the edges, and a partition (T, V⧵T) of V into a set of terminals, T, and a set of non-terminals (or, Steiner nodes), where |T| = k, find a min-cost two-node connected subgraph that contains the terminals. The k-Steiner-2ECS problem has the same inputs; the algorithmic goal is to find a min-cost two-edge connected subgraph that contains the terminals. We present a randomized polynomial-time algorithm for the unweighted k-Steiner-2NCS problem, and a randomized FPTAS for the weighted k-Steiner-2NCS problem. We obtain similar results for a capacitated generalization of the k-Steiner-2ECS problem. Our methods build on results by Björklund, Husfeldt, and Taslaman (SODA 2012) that give a randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem; this problem has the same inputs as the unweighted k-Steiner-2NCS problem, and the algorithmic goal is to find a min-cost simple cycle C that contains the terminals (C may contain any number of Steiner nodes).

Cite as

Ishan Bansal, Joe Cheriyan, Logan Grout, and Sharat Ibrahimpur. Algorithms for 2-Connected Network Design and Flexible Steiner Trees with a Constant Number of Terminals. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.APPROX/RANDOM.2023.14,
  author =	{Bansal, Ishan and Cheriyan, Joe and Grout, Logan and Ibrahimpur, Sharat},
  title =	{{Algorithms for 2-Connected Network Design and Flexible Steiner Trees with a Constant Number of Terminals}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.14},
  URN =		{urn:nbn:de:0030-drops-188396},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.14},
  annote =	{Keywords: Approximation algorithms, Capacitated network design, Network design, Parametrized algorithms, Steiner cycle problem, Steiner 2-edge connected subgraphs, Steiner 2-node connected subgraphs}
}
Document
Track A: Algorithms, Complexity and Games
Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions

Authors: Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Combinatorica 15(3):435-454, 1995). Williamson et al. prove an approximation ratio of two for connectivity augmentation problems where the connectivity requirements can be specified by uncrossable functions. They state: "Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar... A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems." Our main result proves a 16-approximation ratio via the primal-dual method for a class of functions that generalizes the notion of an uncrossable function. There exist instances that can be handled by our methods where none of the optimal dual solutions have a laminar support. We present applications of our main result to three network-design problems. 1) A 16-approximation algorithm for augmenting the family of small cuts of a graph G. The previous best approximation ratio was O(log |V(G)|). 2) A 16⋅⌈k/u_min⌉-approximation algorithm for the Cap-k-ECSS problem which is as follows: Given an undirected graph G = (V,E) with edge costs c ∈ ℚ_{≥0}^E and edge capacities u ∈ ℤ_{≥0}^E, find a minimum cost subset of the edges F ⊆ E such that the capacity across any cut in (V,F) is at least k; u_min (respectively, u_max) denote the minimum (respectively, maximum) capacity of an edge in E, and w.l.o.g. u_max ≤ k. The previous best approximation ratio was min(O(log|V|), k, 2u_max). 3) A 20-approximation algorithm for the model of (p,2)-Flexible Graph Connectivity. The previous best approximation ratio was O(log|V(G)|), where G denotes the input graph.

Cite as

Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.ICALP.2023.15,
  author =	{Bansal, Ishan and Cheriyan, Joseph and Grout, Logan and Ibrahimpur, Sharat},
  title =	{{Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.15},
  URN =		{urn:nbn:de:0030-drops-180678},
  doi =		{10.4230/LIPIcs.ICALP.2023.15},
  annote =	{Keywords: Approximation algorithms, Edge-connectivity of graphs, f-Connectivity problem, Flexible Graph Connectivity, Minimum cuts, Network design, Primal-dual method, Small cuts}
}
Document
APPROX
A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case

Authors: Sylvia Boyd, Joseph Cheriyan, Robert Cummings, Logan Grout, Sharat Ibrahimpur, Zoltán Szigeti, and Lu Wang

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Given a connected undirected graph G ̅ on n vertices, and non-negative edge costs c, the 2ECM problem is that of finding a 2-edge connected spanning multisubgraph of G ̅ of minimum cost. The natural linear program (LP) for 2ECM, which coincides with the subtour LP for the Traveling Salesman Problem on the metric closure of G ̅, gives a lower bound on the optimal cost. For instances where this LP is optimized by a half-integral solution x, Carr and Ravi (1998) showed that the integrality gap is at most 4/3: they show that the vector 4/3 x dominates a convex combination of incidence vectors of 2-edge connected spanning multisubgraphs of G ̅. We present a simpler proof of the result due to Carr and Ravi by applying an extension of Lovász’s splitting-off theorem. Our proof naturally leads to a 4/3-approximation algorithm for half-integral instances. Given a half-integral solution x to the LP for 2ECM, we give an O(n²)-time algorithm to obtain a 2-edge connected spanning multisubgraph of G ̅ whose cost is at most 4/3 c^T x.

Cite as

Sylvia Boyd, Joseph Cheriyan, Robert Cummings, Logan Grout, Sharat Ibrahimpur, Zoltán Szigeti, and Lu Wang. A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 61:1-61:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{boyd_et_al:LIPIcs.APPROX/RANDOM.2020.61,
  author =	{Boyd, Sylvia and Cheriyan, Joseph and Cummings, Robert and Grout, Logan and Ibrahimpur, Sharat and Szigeti, Zolt\'{a}n and Wang, Lu},
  title =	{{A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{61:1--61:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.61},
  URN =		{urn:nbn:de:0030-drops-126643},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.61},
  annote =	{Keywords: 2-Edge Connectivity, Approximation Algorithms, Subtour LP for TSP}
}
  • Refine by Author
  • 3 Grout, Logan
  • 3 Ibrahimpur, Sharat
  • 2 Bansal, Ishan
  • 2 Cheriyan, Joseph
  • 1 Boyd, Sylvia
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Approximation algorithms
  • 2 Network design
  • 1 2-Edge Connectivity
  • 1 Approximation Algorithms
  • 1 Capacitated network design
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2023
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail