6 Search Results for "Hakoniemi, Tuomas"


Document
Low-Depth Algebraic Circuit Lower Bounds over Any Field

Authors: Michael A. Forbes

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The recent breakthrough of Limaye, Srinivasan and Tavenas [Limaye et al., 2022] (LST) gave the first super-polynomial lower bounds against low-depth algebraic circuits, for any field of zero (or sufficiently large) characteristic. It was an open question to extend this result to small-characteristic ([Limaye et al., 2022; Govindasamy et al., 2022; Fournier et al., 2023]), which in particular is relevant for an approach to prove superpolynomial AC⁰[p]-Frege lower bounds ([Govindasamy et al., 2022]). In this work, we prove super-polynomial algebraic circuit lower bounds against low-depth algebraic circuits over any field, with the same parameters as LST (or even matching the improved parameters of Bhargav, Dutta, and Saxena [Bhargav et al., 2022]). We give two proofs. The first is logical, showing that even though the proof of LST naively fails in small characteristic, the proof is sufficiently algebraic that generic transfer results imply the result over characteristic zero implies the result over all fields. Motivated by this indirect proof, we then proceed to give a second constructive proof, replacing the field-dependent set-multilinearization result of LST with a set-multilinearization that works over any field, by using the Binet-Minc identity [Minc, 1979].

Cite as

Michael A. Forbes. Low-Depth Algebraic Circuit Lower Bounds over Any Field. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forbes:LIPIcs.CCC.2024.31,
  author =	{Forbes, Michael A.},
  title =	{{Low-Depth Algebraic Circuit Lower Bounds over Any Field}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.31},
  URN =		{urn:nbn:de:0030-drops-204271},
  doi =		{10.4230/LIPIcs.CCC.2024.31},
  annote =	{Keywords: algebraic circuits, lower bounds, low-depth circuits, positive characteristic}
}
Document
Track A: Algorithms, Complexity and Games
From Proof Complexity to Circuit Complexity via Interactive Protocols

Authors: Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Folklore in complexity theory suspects that circuit lower bounds against NC¹ or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [Pich and Santhanam, 2023]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [Krajíček, 2004], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [Lund et al., 1992]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.

Cite as

Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam. From Proof Complexity to Circuit Complexity via Interactive Protocols. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arteche_et_al:LIPIcs.ICALP.2024.12,
  author =	{Arteche, Noel and Khaniki, Erfan and Pich, J\'{a}n and Santhanam, Rahul},
  title =	{{From Proof Complexity to Circuit Complexity via Interactive Protocols}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.12},
  URN =		{urn:nbn:de:0030-drops-201557},
  doi =		{10.4230/LIPIcs.ICALP.2024.12},
  annote =	{Keywords: proof complexity, circuit complexity, interactive protocols}
}
Document
Track A: Algorithms, Complexity and Games
Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle

Authors: Aaron Potechin and Aaron Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We show that the minimum total coefficient size of a Nullstellensatz proof of the pigeonhole principle on n+1 pigeons and n holes is 2^{Θ(n)}. We also investigate the ordering principle and construct an explicit Nullstellensatz proof for the ordering principle on n elements with total coefficient size 2ⁿ - n.

Cite as

Aaron Potechin and Aaron Zhang. Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{potechin_et_al:LIPIcs.ICALP.2024.117,
  author =	{Potechin, Aaron and Zhang, Aaron},
  title =	{{Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.117},
  URN =		{urn:nbn:de:0030-drops-202604},
  doi =		{10.4230/LIPIcs.ICALP.2024.117},
  annote =	{Keywords: Proof complexity, Nullstellensatz, pigeonhole principle, coefficient size}
}
Document
TFNP Intersections Through the Lens of Feasible Disjunction

Authors: Pavel Hubáček, Erfan Khaniki, and Neil Thapen

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
The complexity class CLS was introduced by Daskalakis and Papadimitriou (SODA 2010) to capture the computational complexity of important TFNP problems solvable by local search over continuous domains and, thus, lying in both PLS and PPAD. It was later shown that, e.g., the problem of computing fixed points guaranteed by Banach’s fixed point theorem is CLS-complete by Daskalakis et al. (STOC 2018). Recently, Fearnley et al. (J. ACM 2023) disproved the plausible conjecture of Daskalakis and Papadimitriou that CLS is a proper subclass of PLS∩PPAD by proving that CLS = PLS∩PPAD. To study the possibility of other collapses in TFNP, we connect classes formed as the intersection of existing subclasses of TFNP with the phenomenon of feasible disjunction in propositional proof complexity; where a proof system has the feasible disjunction property if, whenever a disjunction F ∨ G has a small proof, and F and G have no variables in common, then either F or G has a small proof. Based on some known and some new results about feasible disjunction, we separate the classes formed by intersecting the classical subclasses PLS, PPA, PPAD, PPADS, PPP and CLS. We also give the first examples of proof systems which have the feasible interpolation property, but not the feasible disjunction property.

Cite as

Pavel Hubáček, Erfan Khaniki, and Neil Thapen. TFNP Intersections Through the Lens of Feasible Disjunction. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 63:1-63:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hubacek_et_al:LIPIcs.ITCS.2024.63,
  author =	{Hub\'{a}\v{c}ek, Pavel and Khaniki, Erfan and Thapen, Neil},
  title =	{{TFNP Intersections Through the Lens of Feasible Disjunction}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{63:1--63:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.63},
  URN =		{urn:nbn:de:0030-drops-195917},
  doi =		{10.4230/LIPIcs.ITCS.2024.63},
  annote =	{Keywords: TFNP, feasible disjunction, proof complexity, TFNP intersection classes}
}
Document
Track A: Algorithms, Complexity and Games
Feasible Interpolation for Polynomial Calculus and Sums-Of-Squares

Authors: Tuomas Hakoniemi

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We prove that both Polynomial Calculus and Sums-of-Squares proof systems admit a strong form of feasible interpolation property for sets of polynomial equality constraints. Precisely, given two sets P(x,z) and Q(y,z) of equality constraints, a refutation Π of P(x,z) ∪ Q(y,z), and any assignment a to the variables z, one can find a refutation of P(x,a) or a refutation of Q(y,a) in time polynomial in the length of the bit-string encoding the refutation Π. For Sums-of-Squares we rely on the use of Boolean axioms, but for Polynomial Calculus we do not assume their presence.

Cite as

Tuomas Hakoniemi. Feasible Interpolation for Polynomial Calculus and Sums-Of-Squares. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 63:1-63:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hakoniemi:LIPIcs.ICALP.2020.63,
  author =	{Hakoniemi, Tuomas},
  title =	{{Feasible Interpolation for Polynomial Calculus and Sums-Of-Squares}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{63:1--63:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.63},
  URN =		{urn:nbn:de:0030-drops-124707},
  doi =		{10.4230/LIPIcs.ICALP.2020.63},
  annote =	{Keywords: Proof Complexity, Feasible Interpolation, Sums-of-Squares, Polynomial Calculus}
}
Document
Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs

Authors: Albert Atserias and Tuomas Hakoniemi

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We show that if a system of degree-k polynomial constraints on n Boolean variables has a Sums-of-Squares (SOS) proof of unsatisfiability with at most s many monomials, then it also has one whose degree is of the order of the square root of n log s plus k. A similar statement holds for the more general Positivstellensatz (PS) proofs. This establishes size-degree trade-offs for SOS and PS that match their analogues for weaker proof systems such as Resolution, Polynomial Calculus, and the proof systems for the LP and SDP hierarchies of Lovász and Schrijver. As a corollary to this, and to the known degree lower bounds, we get optimal integrality gaps for exponential size SOS proofs for sparse random instances of the standard NP-hard constraint optimization problems. We also get exponential size SOS lower bounds for Tseitin and Knapsack formulas. The proof of our main result relies on a zero-gap duality theorem for pre-ordered vector spaces that admit an order unit, whose specialization to PS and SOS may be of independent interest.

Cite as

Albert Atserias and Tuomas Hakoniemi. Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{atserias_et_al:LIPIcs.CCC.2019.24,
  author =	{Atserias, Albert and Hakoniemi, Tuomas},
  title =	{{Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.24},
  URN =		{urn:nbn:de:0030-drops-108464},
  doi =		{10.4230/LIPIcs.CCC.2019.24},
  annote =	{Keywords: Proof complexity, semialgebraic proof systems, Sums-of-Squares, Positivstellensatz, trade-offs, lower bounds, monomial size, degree}
}
  • Refine by Author
  • 2 Hakoniemi, Tuomas
  • 2 Khaniki, Erfan
  • 1 Arteche, Noel
  • 1 Atserias, Albert
  • 1 Forbes, Michael A.
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Proof complexity
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Complexity classes
  • 1 Theory of computation → Complexity theory and logic
  • Show More...

  • Refine by Keyword
  • 2 Proof complexity
  • 2 Sums-of-Squares
  • 2 lower bounds
  • 2 proof complexity
  • 1 Feasible Interpolation
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 4 2024
  • 1 2019
  • 1 2020