5 Search Results for "Hermant, Olivier"


Document
The Flower Calculus

Authors: Pablo Donato

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects called "flowers", that enjoy both a graphical interpretation as topological diagrams, and a textual presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses completely with the traditional notion of symbolic connective, operating solely on nested flowers containing atomic predicates. We prove both the soundness of the full calculus and the completeness of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is fully invertible, a desirable property for both automated and interactive proof search.

Cite as

Pablo Donato. The Flower Calculus. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 5:1-5:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{donato:LIPIcs.FSCD.2024.5,
  author =	{Donato, Pablo},
  title =	{{The Flower Calculus}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{5:1--5:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.5},
  URN =		{urn:nbn:de:0030-drops-203343},
  doi =		{10.4230/LIPIcs.FSCD.2024.5},
  annote =	{Keywords: deep inference, graphical calculi, existential graphs, intuitionistic logic, Kripke semantics, cut-elimination}
}
Document
Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti

Authors: Thiago Felicissimo and Théo Winterhalter

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Proof assistants such as Coq implement a type theory featuring three important features: impredicativity, cumulativity and product covariance. This combination has proven difficult to be expressed in the logical framework Dedukti, and previous attempts have failed in providing an encoding that is proven confluent, sound and conservative. In this work we solve this longstanding open problem by providing an encoding of these three features that we prove to be confluent, sound and to satisfy a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a contribution by itself, and combines various criteria and proof techniques from rewriting theory. Our proof of soundness also contributes a new strategy in which the result is shown in terms of an inverse translation function, fixing a common flaw made in some previous encoding attempts.

Cite as

Thiago Felicissimo and Théo Winterhalter. Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 21:1-21:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{felicissimo_et_al:LIPIcs.FSCD.2024.21,
  author =	{Felicissimo, Thiago and Winterhalter, Th\'{e}o},
  title =	{{Impredicativity, Cumulativity and Product Covariance in the Logical Framework Dedukti}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{21:1--21:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.21},
  URN =		{urn:nbn:de:0030-drops-203503},
  doi =		{10.4230/LIPIcs.FSCD.2024.21},
  annote =	{Keywords: Dedukti, Rewriting, Confluence, Dependent types, Cumulativity, Universes}
}
Document
Encoding Agda Programs Using Rewriting

Authors: Guillaume Genestier

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
We present in this paper an encoding in an extension with rewriting of the Edimburgh Logical Framework (LF) [Harper et al., 1993] of two common features: universe polymorphism and eta-convertibility. This encoding is at the root of the translator between Agda and Dedukti developped by the author.

Cite as

Guillaume Genestier. Encoding Agda Programs Using Rewriting. In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 31:1-31:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{genestier:LIPIcs.FSCD.2020.31,
  author =	{Genestier, Guillaume},
  title =	{{Encoding Agda Programs Using Rewriting}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{31:1--31:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.31},
  URN =		{urn:nbn:de:0030-drops-123530},
  doi =		{10.4230/LIPIcs.FSCD.2020.31},
  annote =	{Keywords: Logical Frameworks, Rewriting, Universe Polymorphism, Eta Conversion}
}
Document
Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting

Authors: Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
Dependency pairs are a key concept at the core of modern automated termination provers for first-order term rewriting systems. In this paper, we introduce an extension of this technique for a large class of dependently-typed higher-order rewriting systems. This extends previous results by Wahlstedt on the one hand and the first author on the other hand to strong normalization and non-orthogonal rewriting systems. This new criterion is implemented in the type-checker Dedukti.

Cite as

Frédéric Blanqui, Guillaume Genestier, and Olivier Hermant. Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{blanqui_et_al:LIPIcs.FSCD.2019.9,
  author =	{Blanqui, Fr\'{e}d\'{e}ric and Genestier, Guillaume and Hermant, Olivier},
  title =	{{Dependency Pairs Termination in Dependent Type Theory Modulo Rewriting}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.9},
  URN =		{urn:nbn:de:0030-drops-105167},
  doi =		{10.4230/LIPIcs.FSCD.2019.9},
  annote =	{Keywords: termination, higher-order rewriting, dependent types, dependency pairs}
}
Document
A Semantic Proof that Reducibility Candidates entail Cut Elimination

Authors: Denis Cousineau and Olivier Hermant

Published in: LIPIcs, Volume 15, 23rd International Conference on Rewriting Techniques and Applications (RTA'12) (2012)


Abstract
Two main lines have been adopted to prove the cut elimination theorem: the syntactic one, that studies the process of reducing cuts, and the semantic one, that consists in interpreting a sequent in some algebra and extracting from this interpretation a cut-free proof of this very sequent. A link between those two methods was exhibited by studying in a semantic way, syntactical tools that allow to prove (strong) normalization of proof-terms, namely reducibility candidates. In the case of deduction modulo, a framework combining deduction and rewriting rules in which theories like Zermelo set theory and higher order logic can be expressed, this is obtained by constructing a reducibility candidates valued model. The existence of such a pre-model for a theory entails strong normalization of its proof-terms and, by the usual syntactic argument, the cut elimination property. In this paper, we strengthen this gate between syntactic and semantic methods, by providing a full semantic proof that the existence of a pre-model entails the cut elimination property for the considered theory in deduction modulo. We first define a new simplified variant of reducibility candidates à la Girard, that is sufficient to prove weak normalization of proof-terms (and therefore the cut elimination property). Then we build, from some model valued on the pre-Heyting algebra of those WN reducibility candidates, a regular model valued on a Heyting algebra on which we apply the usual soundness/strong completeness argument. Finally, we discuss further extensions of this new method towards normalization by evaluation techniques that commonly use Kripke semantics.

Cite as

Denis Cousineau and Olivier Hermant. A Semantic Proof that Reducibility Candidates entail Cut Elimination. In 23rd International Conference on Rewriting Techniques and Applications (RTA'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 15, pp. 133-148, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{cousineau_et_al:LIPIcs.RTA.2012.133,
  author =	{Cousineau, Denis and Hermant, Olivier},
  title =	{{A Semantic Proof that Reducibility Candidates entail Cut Elimination}},
  booktitle =	{23rd International Conference on Rewriting Techniques and Applications (RTA'12)},
  pages =	{133--148},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-38-5},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{15},
  editor =	{Tiwari, Ashish},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2012.133},
  URN =		{urn:nbn:de:0030-drops-34899},
  doi =		{10.4230/LIPIcs.RTA.2012.133},
  annote =	{Keywords: cut elimination, reducibility candidates, (pre-)Heyting algebras}
}
  • Refine by Author
  • 2 Genestier, Guillaume
  • 2 Hermant, Olivier
  • 1 Blanqui, Frédéric
  • 1 Cousineau, Denis
  • 1 Donato, Pablo
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Equational logic and rewriting
  • 3 Theory of computation → Type theory
  • 1 Theory of computation → Constructive mathematics
  • 1 Theory of computation → Proof theory

  • Refine by Keyword
  • 2 Rewriting
  • 1 (pre-)Heyting algebras
  • 1 Confluence
  • 1 Cumulativity
  • 1 Dedukti
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2024
  • 1 2012
  • 1 2019
  • 1 2020