9 Search Results for "Jung, Christopher"


Document
Distributionally Robust Data Join

Authors: Pranjal Awasthi, Christopher Jung, and Jamie Morgenstern

Published in: LIPIcs, Volume 256, 4th Symposium on Foundations of Responsible Computing (FORC 2023)


Abstract
Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional auxiliary features not present in the first dataset. What is the most principled way to use these datasets together to construct a predictor? The answer should depend upon whether these datasets are generated by the same or different distributions over their mutual feature sets, and how similar the test distribution will be to either of those distributions. In many applications, the two datasets will likely follow different distributions, but both may be close to the test distribution. We introduce the problem of building a predictor which minimizes the maximum loss over all probability distributions over the original features, auxiliary features, and binary labels, whose Wasserstein distance is r₁ away from the empirical distribution over the labeled dataset and r₂ away from that of the unlabeled dataset. This can be thought of as a generalization of distributionally robust optimization (DRO), which allows for two data sources, one of which is unlabeled and may contain auxiliary features.

Cite as

Pranjal Awasthi, Christopher Jung, and Jamie Morgenstern. Distributionally Robust Data Join. In 4th Symposium on Foundations of Responsible Computing (FORC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 256, pp. 10:1-10:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{awasthi_et_al:LIPIcs.FORC.2023.10,
  author =	{Awasthi, Pranjal and Jung, Christopher and Morgenstern, Jamie},
  title =	{{Distributionally Robust Data Join}},
  booktitle =	{4th Symposium on Foundations of Responsible Computing (FORC 2023)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-272-3},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{256},
  editor =	{Talwar, Kunal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2023.10},
  URN =		{urn:nbn:de:0030-drops-179311},
  doi =		{10.4230/LIPIcs.FORC.2023.10},
  annote =	{Keywords: Distributionally Robust Optimization, Semi-Supervised Learning, Learning Theory}
}
Document
Online Multivalid Learning: Means, Moments, and Prediction Intervals

Authors: Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present a general, efficient technique for providing contextual predictions that are "multivalid" in various senses, against an online sequence of adversarially chosen examples (x,y). This means that the resulting estimates correctly predict various statistics of the labels y not just marginally - as averaged over the sequence of examples - but also conditionally on x ∈ G for any G belonging to an arbitrary intersecting collection of groups 𝒢. We provide three instantiations of this framework. The first is mean prediction, which corresponds to an online algorithm satisfying the notion of multicalibration from [Hébert-Johnson et al., 2018]. The second is variance and higher moment prediction, which corresponds to an online algorithm satisfying the notion of mean-conditioned moment multicalibration from [Jung et al., 2021]. Finally, we define a new notion of prediction interval multivalidity, and give an algorithm for finding prediction intervals which satisfy it. Because our algorithms handle adversarially chosen examples, they can equally well be used to predict statistics of the residuals of arbitrary point prediction methods, giving rise to very general techniques for quantifying the uncertainty of predictions of black box algorithms, even in an online adversarial setting. When instantiated for prediction intervals, this solves a similar problem as conformal prediction, but in an adversarial environment and with multivalidity guarantees stronger than simple marginal coverage guarantees.

Cite as

Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M. Pai, and Aaron Roth. Online Multivalid Learning: Means, Moments, and Prediction Intervals. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 82:1-82:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ITCS.2022.82,
  author =	{Gupta, Varun and Jung, Christopher and Noarov, Georgy and Pai, Mallesh M. and Roth, Aaron},
  title =	{{Online Multivalid Learning: Means, Moments, and Prediction Intervals}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{82:1--82:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.82},
  URN =		{urn:nbn:de:0030-drops-156785},
  doi =		{10.4230/LIPIcs.ITCS.2022.82},
  annote =	{Keywords: Uncertainty Estimation, Calibration, Online Learning}
}
Document
Track A: Algorithms, Complexity and Games
Revisiting Priority k-Center: Fairness and Outliers

Authors: Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In the Priority k-Center problem, the input consists of a metric space (X,d), an integer k and for each point v ∈ X a priority radius r(v). The goal is to choose k-centers S ⊆ X to minimize max_{v ∈ X} 1/(r(v)) d(v,S). If all r(v)’s were uniform, one obtains the classical k-center problem. Plesník [Ján Plesník, 1987] introduced this problem and gave a 2-approximation algorithm matching the best possible algorithm for vanilla k-center. We show how the Priority k-Center problem is related to two different notions of fair clustering [Harris et al., 2019; Christopher Jung et al., 2020]. Motivated by these developments we revisit the problem and, in our main technical contribution, develop a framework that yields constant factor approximation algorithms for Priority k-Center with outliers. Our framework extends to generalizations of Priority k-Center to matroid and knapsack constraints, and as a corollary, also yields algorithms with fairness guarantees in the lottery model of Harris et al.

Cite as

Tanvi Bajpai, Deeparnab Chakrabarty, Chandra Chekuri, and Maryam Negahbani. Revisiting Priority k-Center: Fairness and Outliers. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 21:1-21:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bajpai_et_al:LIPIcs.ICALP.2021.21,
  author =	{Bajpai, Tanvi and Chakrabarty, Deeparnab and Chekuri, Chandra and Negahbani, Maryam},
  title =	{{Revisiting Priority k-Center: Fairness and Outliers}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{21:1--21:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.21},
  URN =		{urn:nbn:de:0030-drops-140909},
  doi =		{10.4230/LIPIcs.ICALP.2021.21},
  annote =	{Keywords: Fairness, Clustering, Approximation, Outliers}
}
Document
An Algorithmic Framework for Fairness Elicitation

Authors: Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei Steven Wu

Published in: LIPIcs, Volume 192, 2nd Symposium on Foundations of Responsible Computing (FORC 2021)


Abstract
We consider settings in which the right notion of fairness is not captured by simple mathematical definitions (such as equality of error rates across groups), but might be more complex and nuanced and thus require elicitation from individual or collective stakeholders. We introduce a framework in which pairs of individuals can be identified as requiring (approximately) equal treatment under a learned model, or requiring ordered treatment such as "applicant Alice should be at least as likely to receive a loan as applicant Bob". We provide a provably convergent and oracle efficient algorithm for learning the most accurate model subject to the elicited fairness constraints, and prove generalization bounds for both accuracy and fairness. This algorithm can also combine the elicited constraints with traditional statistical fairness notions, thus "correcting" or modifying the latter by the former. We report preliminary findings of a behavioral study of our framework using human-subject fairness constraints elicited on the COMPAS criminal recidivism dataset.

Cite as

Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei Steven Wu. An Algorithmic Framework for Fairness Elicitation. In 2nd Symposium on Foundations of Responsible Computing (FORC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 192, pp. 2:1-2:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.FORC.2021.2,
  author =	{Jung, Christopher and Kearns, Michael and Neel, Seth and Roth, Aaron and Stapleton, Logan and Wu, Zhiwei Steven},
  title =	{{An Algorithmic Framework for Fairness Elicitation}},
  booktitle =	{2nd Symposium on Foundations of Responsible Computing (FORC 2021)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-187-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{192},
  editor =	{Ligett, Katrina and Gupta, Swati},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2021.2},
  URN =		{urn:nbn:de:0030-drops-138701},
  doi =		{10.4230/LIPIcs.FORC.2021.2},
  annote =	{Keywords: Fairness, Fairness Elicitation}
}
Document
Service in Your Neighborhood: Fairness in Center Location

Authors: Christopher Jung, Sampath Kannan, and Neil Lutz

Published in: LIPIcs, Volume 156, 1st Symposium on Foundations of Responsible Computing (FORC 2020)


Abstract
When selecting locations for a set of centers, standard clustering algorithms may place unfair burden on some individuals and neighborhoods. We formulate a fairness concept that takes local population densities into account. In particular, given k centers to locate and a population of size n, we define the "neighborhood radius" of an individual i as the minimum radius of a ball centered at i that contains at least n/k individuals. Our objective is to ensure that each individual has a center that is within at most a small constant factor of her neighborhood radius. We present several theoretical results: We show that optimizing this factor is NP-hard; we give an approximation algorithm that guarantees a factor of at most 2 in all metric spaces; and we prove matching lower bounds in some metric spaces. We apply a variant of this algorithm to real-world address data, showing that it is quite different from standard clustering algorithms and outperforms them on our objective function and balances the load between centers more evenly.

Cite as

Christopher Jung, Sampath Kannan, and Neil Lutz. Service in Your Neighborhood: Fairness in Center Location. In 1st Symposium on Foundations of Responsible Computing (FORC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 156, pp. 5:1-5:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.FORC.2020.5,
  author =	{Jung, Christopher and Kannan, Sampath and Lutz, Neil},
  title =	{{Service in Your Neighborhood: Fairness in Center Location}},
  booktitle =	{1st Symposium on Foundations of Responsible Computing (FORC 2020)},
  pages =	{5:1--5:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-142-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{156},
  editor =	{Roth, Aaron},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2020.5},
  URN =		{urn:nbn:de:0030-drops-120215},
  doi =		{10.4230/LIPIcs.FORC.2020.5},
  annote =	{Keywords: Fairness, Clustering, Facility Location}
}
Document
Distribution Constraints: The Chase for Distributed Data

Authors: Gaetano Geck, Frank Neven, and Thomas Schwentick

Published in: LIPIcs, Volume 155, 23rd International Conference on Database Theory (ICDT 2020)


Abstract
This paper introduces a declarative framework to specify and reason about distributions of data over computing nodes in a distributed setting. More specifically, it proposes distribution constraints which are tuple and equality generating dependencies (tgds and egds) extended with node variables ranging over computing nodes. In particular, they can express co-partitioning constraints and constraints about range-based data distributions by using comparison atoms. The main technical contribution is the study of the implication problem of distribution constraints. While implication is undecidable in general, relevant fragments of so-called data-full constraints are exhibited for which the corresponding implication problems are complete for EXPTIME, PSPACE and NP. These results yield bounds on deciding parallel-correctness for conjunctive queries in the presence of distribution constraints.

Cite as

Gaetano Geck, Frank Neven, and Thomas Schwentick. Distribution Constraints: The Chase for Distributed Data. In 23rd International Conference on Database Theory (ICDT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 155, pp. 13:1-13:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{geck_et_al:LIPIcs.ICDT.2020.13,
  author =	{Geck, Gaetano and Neven, Frank and Schwentick, Thomas},
  title =	{{Distribution Constraints: The Chase for Distributed Data}},
  booktitle =	{23rd International Conference on Database Theory (ICDT 2020)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-139-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{155},
  editor =	{Lutz, Carsten and Jung, Jean Christoph},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2020.13},
  URN =		{urn:nbn:de:0030-drops-119378},
  doi =		{10.4230/LIPIcs.ICDT.2020.13},
  annote =	{Keywords: tuple-generating dependencies, chase, conjunctive queries, distributed evaluation}
}
Document
A New Analysis of Differential Privacy’s Generalization Guarantees

Authors: Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
We give a new proof of the "transfer theorem" underlying adaptive data analysis: that any mechanism for answering adaptively chosen statistical queries that is differentially private and sample-accurate is also accurate out-of-sample. Our new proof is elementary and gives structural insights that we expect will be useful elsewhere. We show: 1) that differential privacy ensures that the expectation of any query on the conditional distribution on datasets induced by the transcript of the interaction is close to its expectation on the data distribution, and 2) sample accuracy on its own ensures that any query answer produced by the mechanism is close to the expectation of the query on the conditional distribution. This second claim follows from a thought experiment in which we imagine that the dataset is resampled from the conditional distribution after the mechanism has committed to its answers. The transfer theorem then follows by summing these two bounds, and in particular, avoids the "monitor argument" used to derive high probability bounds in prior work. An upshot of our new proof technique is that the concrete bounds we obtain are substantially better than the best previously known bounds, even though the improvements are in the constants, rather than the asymptotics (which are known to be tight). As we show, our new bounds outperform the naive "sample-splitting" baseline at dramatically smaller dataset sizes compared to the previous state of the art, bringing techniques from this literature closer to practicality.

Cite as

Christopher Jung, Katrina Ligett, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Moshe Shenfeld. A New Analysis of Differential Privacy’s Generalization Guarantees. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 31:1-31:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.ITCS.2020.31,
  author =	{Jung, Christopher and Ligett, Katrina and Neel, Seth and Roth, Aaron and Sharifi-Malvajerdi, Saeed and Shenfeld, Moshe},
  title =	{{A New Analysis of Differential Privacy’s Generalization Guarantees}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{31:1--31:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.31},
  URN =		{urn:nbn:de:0030-drops-117165},
  doi =		{10.4230/LIPIcs.ITCS.2020.31},
  annote =	{Keywords: Differential Privacy, Adaptive Data Analysis, Transfer Theorem}
}
Document
Eventually Sound Points-To Analysis with Specifications

Authors: Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex Aiken

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Static analyses make the increasingly tenuous assumption that all source code is available for analysis; for example, large libraries often call into native code that cannot be analyzed. We propose a points-to analysis that initially makes optimistic assumptions about missing code, and then inserts runtime checks that report counterexamples to these assumptions that occur during execution. Our approach guarantees eventual soundness, which combines two guarantees: (i) the runtime checks are guaranteed to catch the first counterexample that occurs during any execution, in which case execution can be terminated to prevent harm, and (ii) only finitely many counterexamples ever occur, implying that the static analysis eventually becomes statically sound with respect to all remaining executions. We implement Optix, an eventually sound points-to analysis for Android apps, where the Android framework is missing. We show that the runtime checks added by Optix incur low overhead on real programs, and demonstrate how Optix improves a client information flow analysis for detecting Android malware.

Cite as

Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex Aiken. Eventually Sound Points-To Analysis with Specifications. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 11:1-11:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bastani_et_al:LIPIcs.ECOOP.2019.11,
  author =	{Bastani, Osbert and Sharma, Rahul and Clapp, Lazaro and Anand, Saswat and Aiken, Alex},
  title =	{{Eventually Sound Points-To Analysis with Specifications}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{11:1--11:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.11},
  URN =		{urn:nbn:de:0030-drops-108038},
  doi =		{10.4230/LIPIcs.ECOOP.2019.11},
  annote =	{Keywords: specification inference, static points-to analysis, runtime monitoring}
}
Document
Brave New Idea Paper
Motion Session Types for Robotic Interactions (Brave New Idea Paper)

Authors: Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Robotics applications involve programming concurrent components synchronising through messages while simultaneously executing motion primitives that control the state of the physical world. Today, these applications are typically programmed in low-level imperative programming languages which provide little support for abstraction or reasoning. We present a unifying programming model for concurrent message-passing systems that additionally control the evolution of physical state variables, together with a compositional reasoning framework based on multiparty session types. Our programming model combines message-passing concurrent processes with motion primitives. Processes represent autonomous components in a robotic assembly, such as a cart or a robotic arm, and they synchronise via discrete messages as well as via motion primitives. Continuous evolution of trajectories under the action of controllers is also modelled by motion primitives, which operate in global, physical time. We use multiparty session types as specifications to orchestrate discrete message-passing concurrency and continuous flow of trajectories. A global session type specifies the communication protocol among the components with joint motion primitives. A projection from a global type ensures that jointly executed actions at end-points are communication safe and deadlock-free, i.e., session-typed components do not get stuck. Together, these checks provide a compositional verification methodology for assemblies of robotic components with respect to concurrency invariants such as a progress property of communications as well as dynamic invariants such as absence of collision. We have implemented our core language and, through initial experiments, have shown how multiparty session types can be used to specify and compositionally verify robotic systems implemented on top of off-the-shelf and custom hardware using standard robotics application libraries.

Cite as

Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion Session Types for Robotic Interactions (Brave New Idea Paper). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 28:1-28:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{majumdar_et_al:LIPIcs.ECOOP.2019.28,
  author =	{Majumdar, Rupak and Pirron, Marcus and Yoshida, Nobuko and Zufferey, Damien},
  title =	{{Motion Session Types for Robotic Interactions}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{28:1--28:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.28},
  URN =		{urn:nbn:de:0030-drops-108205},
  doi =		{10.4230/LIPIcs.ECOOP.2019.28},
  annote =	{Keywords: Session Types, Robotics, Concurrent Programming, Motions, Communications, Multiparty Session Types, Deadlock Freedom}
}
  • Refine by Author
  • 5 Jung, Christopher
  • 3 Roth, Aaron
  • 2 Neel, Seth
  • 1 Aiken, Alex
  • 1 Anand, Saswat
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Machine learning theory
  • 1 Computer systems organization → Robotics
  • 1 Information systems → Parallel and distributed DBMSs
  • 1 Software and its engineering → Concurrent programming languages
  • 1 Theory of computation → Database constraints theory
  • Show More...

  • Refine by Keyword
  • 3 Fairness
  • 2 Clustering
  • 1 Adaptive Data Analysis
  • 1 Approximation
  • 1 Calibration
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 3 2020
  • 2 2019
  • 2 2021
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail