5 Search Results for "Katz, Daniel S."


Document
Research Software Engineering: Bridging Knowledge Gaps (Dagstuhl Seminar 24161)

Authors: Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz

Published in: Dagstuhl Reports, Volume 14, Issue 4 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar "Research Software Engineering: Bridging Knowledge Gaps" (24161). The seminar brought together participants from the research software engineering and software engineering research communities, as well as experts in research software education and community building to identify knowledge gaps between the two communities, and start collaborations to overcome these gaps. Over the course of five days, participants engaged in learning about each others' work and collaborated in breakout groups on specific topics at the intersection between the two communities. Outputs from the working groups will be collected in a journal special issue and distributed via a dedicated website.

Cite as

Stephan Druskat, Lars Grunske, Caroline Jay, and Daniel S. Katz. Research Software Engineering: Bridging Knowledge Gaps (Dagstuhl Seminar 24161). In Dagstuhl Reports, Volume 14, Issue 4, pp. 42-53, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{druskat_et_al:DagRep.14.4.42,
  author =	{Druskat, Stephan and Grunske, Lars and Jay, Caroline and Katz, Daniel S.},
  title =	{{Research Software Engineering: Bridging Knowledge Gaps (Dagstuhl Seminar 24161)}},
  pages =	{42--53},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{14},
  number =	{4},
  editor =	{Druskat, Stephan and Grunske, Lars and Jay, Caroline and Katz, Daniel S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.14.4.42},
  URN =		{urn:nbn:de:0030-drops-213530},
  doi =		{10.4230/DagRep.14.4.42},
  annote =	{Keywords: community building, Dagstuhl Seminar, knowledge transfer, research software engineering, RSE, software engineering research}
}
Document
Taming Differentiable Logics with Coq Formalisation

Authors: Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, and Kathrin Stark

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
For performance and verification in machine learning, new methods have recently been proposed that optimise learning systems to satisfy formally expressed logical properties. Among these methods, differentiable logics (DLs) are used to translate propositional or first-order formulae into loss functions deployed for optimisation in machine learning. At the same time, recent attempts to give programming language support for verification of neural networks showed that DLs can be used to compile verification properties to machine-learning backends. This situation is calling for stronger guarantees about the soundness of such compilers, the soundness and compositionality of DLs, and the differentiability and performance of the resulting loss functions. In this paper, we propose an approach to formalise existing DLs using the Mathematical Components library in the Coq proof assistant. Thanks to this formalisation, we are able to give uniform semantics to otherwise disparate DLs, give formal proofs to existing informal arguments, find errors in previous work, and provide formal proofs to missing conjectured properties. This work is meant as a stepping stone for the development of programming language support for verification of machine learning.

Cite as

Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, and Kathrin Stark. Taming Differentiable Logics with Coq Formalisation. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{affeldt_et_al:LIPIcs.ITP.2024.4,
  author =	{Affeldt, Reynald and Bruni, Alessandro and Komendantskaya, Ekaterina and \'{S}lusarz, Natalia and Stark, Kathrin},
  title =	{{Taming Differentiable Logics with Coq Formalisation}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.4},
  URN =		{urn:nbn:de:0030-drops-207325},
  doi =		{10.4230/LIPIcs.ITP.2024.4},
  annote =	{Keywords: Machine Learning, Loss Functions, Differentiable Logics, Logic and Semantics, Interactive Theorem Proving}
}
Document
Dynamic Time Warping-Based Proximity Problems

Authors: Boris Aronov, Matthew J. Katz, and Elad Sulami

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Dynamic Time Warping (DTW) is a well-known similarity measure for curves, i.e., sequences of points, and especially for time series. We study several proximity problems for curves, where dynamic time warping is the underlying similarity measure. More precisely, we focus on the variants of these problems, in which, whenever we refer to the dynamic time warping distance between two curves, one of them is a line segment (i.e., a sequence of length two). These variants already reveal some of the difficulties that occur when dealing with the more general ones. Specifically, we study the following three problems: (i) distance oracle: given a curve C in ℝ^d, preprocess it to accommodate distance computations between query segments and C, (ii) segment center: given a set 𝒞 of curves in ℝ^d, find a segment s that minimizes the maximum distance between s and a curve in 𝒞, and (iii) segment nearest neighbor: given 𝒞, construct a data structure for segment nearest neighbor queries, i.e., return the curve in 𝒞 which is closest to a query segment s. We present solutions to these problems in any constant dimension d ≥ 1, using L_∞ for inter-point distances. We also consider the approximation version of the first problem, using L₁ for inter-point distances. That is, given a length-m curve C in ℝ^d, we construct a data structure of size O(m log m) that allows one to compute a 2-approximation of the distance between a query segment s and C in O(log³ m) time. Finally, we describe an interesting experimental study that we performed, which is related to the first problem above.

Cite as

Boris Aronov, Matthew J. Katz, and Elad Sulami. Dynamic Time Warping-Based Proximity Problems. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.MFCS.2020.9,
  author =	{Aronov, Boris and Katz, Matthew J. and Sulami, Elad},
  title =	{{Dynamic Time Warping-Based Proximity Problems}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.9},
  URN =		{urn:nbn:de:0030-drops-126794},
  doi =		{10.4230/LIPIcs.MFCS.2020.9},
  annote =	{Keywords: dynamic time warping, distance oracle, clustering, nearest-neighbor search}
}
Document
Reachability in a Planar Subdivision with Direction Constraints

Authors: Daniel Binham, Pedro Machado Manhaes de Castro, and Antoine Vigneron

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
Given a planar subdivision with n vertices, each face having a cone of possible directions of travel, our goal is to decide which vertices of the subdivision can be reached from a given starting point s. We give an O(n log n)-time algorithm for this problem, as well as an Omega(n log n) lower bound in the algebraic computation tree model. We prove that the generalization where two cones of directions per face are allowed is NP-hard.

Cite as

Daniel Binham, Pedro Machado Manhaes de Castro, and Antoine Vigneron. Reachability in a Planar Subdivision with Direction Constraints. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{binham_et_al:LIPIcs.SoCG.2017.17,
  author =	{Binham, Daniel and Manhaes de Castro, Pedro Machado and Vigneron, Antoine},
  title =	{{Reachability in a Planar Subdivision with Direction Constraints}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.17},
  URN =		{urn:nbn:de:0030-drops-72022},
  doi =		{10.4230/LIPIcs.SoCG.2017.17},
  annote =	{Keywords: Design and analysis of geometric algorithms, Path planning, Reachability}
}
Document
Engineering Academic Software (Dagstuhl Perspectives Workshop 16252)

Authors: Alice Allen, Cecilia Aragon, Christoph Becker, Jeffrey Carver, Andrei Chis, Benoit Combemale, Mike Croucher, Kevin Crowston, Daniel Garijo, Ashish Gehani, Carole Goble, Robert Haines, Robert Hirschfeld, James Howison, Kathryn Huff, Caroline Jay, Daniel S. Katz, Claude Kirchner, Katie Kuksenok, Ralf Lämmel, Oscar Nierstrasz, Matt Turk, Rob van Nieuwpoort, Matthew Vaughn, and Jurgen J. Vinju

Published in: Dagstuhl Manifestos, Volume 6, Issue 1 (2017)


Abstract
Software is often a critical component of scientific research. It can be a component of the academic research methods used to produce research results, or it may itself be an academic research result. Software, however, has rarely been considered to be a citable artifact in its own right. With the advent of open-source software, artifact evaluation committees of conferences, and journals that include source code and running systems as part of the published artifacts, we foresee that software will increasingly be recognized as part of the academic process. The quality and sustainability of this software must be accounted for, both a prioro and a posteriori. The Dagstuhl Perspectives Workshop on "Engineering Academic Software" has examined the strengths, weaknesses, risks, and opportunities of academic software engineering. A key outcome of the workshop is this Dagstuhl Manifesto, serving as a roadmap towards future professional software engineering for software-based research instruments and other software produced and used in an academic context. The manifesto is expressed in terms of a series of actionable "pledges" that users and developers of academic research software can take as concrete steps towards improving the environment in which that software is produced.

Cite as

Alice Allen, Cecilia Aragon, Christoph Becker, Jeffrey Carver, Andrei Chis, Benoit Combemale, Mike Croucher, Kevin Crowston, Daniel Garijo, Ashish Gehani, Carole Goble, Robert Haines, Robert Hirschfeld, James Howison, Kathryn Huff, Caroline Jay, Daniel S. Katz, Claude Kirchner, Katie Kuksenok, Ralf Lämmel, Oscar Nierstrasz, Matt Turk, Rob van Nieuwpoort, Matthew Vaughn, and Jurgen J. Vinju. Engineering Academic Software (Dagstuhl Perspectives Workshop 16252). In Dagstuhl Manifestos, Volume 6, Issue 1, pp. 1-20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{allen_et_al:DagMan.6.1.1,
  author =	{Allen, Alice and Aragon, Cecilia and Becker, Christoph and Carver, Jeffrey and Chis, Andrei and Combemale, Benoit and Croucher, Mike and Crowston, Kevin and Garijo, Daniel and Gehani, Ashish and Goble, Carole and Haines, Robert and Hirschfeld, Robert and Howison, James and Huff, Kathryn and Jay, Caroline and Katz, Daniel S. and Kirchner, Claude and Kuksenok, Katie and L\"{a}mmel, Ralf and Nierstrasz, Oscar and Turk, Matt and van Nieuwpoort, Rob and Vaughn, Matthew and Vinju, Jurgen J.},
  title =	{{Engineering Academic Software (Dagstuhl Perspectives Workshop 16252)}},
  pages =	{1--20},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2017},
  volume =	{6},
  number =	{1},
  editor =	{Allen, Alice and Aragon, Cecilia and Becker, Christoph and Carver, Jeffrey and Chis, Andrei and Combemale, Benoit and Croucher, Mike and Crowston, Kevin and Garijo, Daniel and Gehani, Ashish and Goble, Carole and Haines, Robert and Hirschfeld, Robert and Howison, James and Huff, Kathryn and Jay, Caroline and Katz, Daniel S. and Kirchner, Claude and Kuksenok, Katie and L\"{a}mmel, Ralf and Nierstrasz, Oscar and Turk, Matt and van Nieuwpoort, Rob and Vaughn, Matthew and Vinju, Jurgen J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.6.1.1},
  URN =		{urn:nbn:de:0030-drops-71468},
  doi =		{10.4230/DagMan.6.1.1},
  annote =	{Keywords: Academic software, Research software, Software citation, Software sustainability}
}
  • Refine by Author
  • 2 Jay, Caroline
  • 2 Katz, Daniel S.
  • 1 Affeldt, Reynald
  • 1 Allen, Alice
  • 1 Aragon, Cecilia
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Academic software
  • 1 Dagstuhl Seminar
  • 1 Design and analysis of geometric algorithms
  • 1 Differentiable Logics
  • 1 Interactive Theorem Proving
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2017
  • 2 2024
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail