7 Search Results for "Kenison, George"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Threshold Problem for Hypergeometric Sequences with Quadratic Parameters

Authors: George Kenison

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Hypergeometric sequences are rational-valued sequences that satisfy first-order linear recurrence relations with polynomial coefficients; that is, ⟨u_n⟩_{n=0}^∞ is hypergeometric if it satisfies a first-order linear recurrence of the form p(n)u_{n+1} = q(n)u_n with polynomial coefficients p,q ∈ ℤ[x] and u₀ ∈ ℚ. In this paper, we consider the Threshold Problem for hypergeometric sequences: given a hypergeometric sequence ⟨u_n⟩_{n=0}^∞ and a threshold t ∈ ℚ, determine whether u_n ≥ t for each n ∈ ℕ₀. We establish decidability for the Threshold Problem under the assumption that the coefficients p and q are monic polynomials whose roots lie in an imaginary quadratic extension of ℚ. We also establish conditional decidability results; for example, under the assumption that the coefficients p and q are monic polynomials whose roots lie in any number of quadratic extensions of ℚ, the Threshold Problem is decidable subject to the truth of Schanuel’s conjecture. Finally, we show how our approach both recovers and extends some of the recent decidability results on the Membership Problem for hypergeometric sequences with quadratic parameters.

Cite as

George Kenison. The Threshold Problem for Hypergeometric Sequences with Quadratic Parameters. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 145:1-145:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kenison:LIPIcs.ICALP.2024.145,
  author =	{Kenison, George},
  title =	{{The Threshold Problem for Hypergeometric Sequences with Quadratic Parameters}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{145:1--145:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.145},
  URN =		{urn:nbn:de:0030-drops-202882},
  doi =		{10.4230/LIPIcs.ICALP.2024.145},
  annote =	{Keywords: Threshold Problem, Membership Problem, Hypergeometric Sequences}
}
Document
Linear Loop Synthesis for Quadratic Invariants

Authors: S. Hitarth, George Kenison, Laura Kovács, and Anton Varonka

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Invariants are key to formal loop verification as they capture loop properties that are valid before and after each loop iteration. Yet, generating invariants is a notorious task already for syntactically restricted classes of loops. Rather than generating invariants for given loops, in this paper we synthesise loops that exhibit a predefined behaviour given by an invariant. From the perspective of formal loop verification, the synthesised loops are thus correct by design and no longer need to be verified. To overcome the hardness of reasoning with arbitrarily strong invariants, in this paper we construct simple (non-nested) while loops with linear updates that exhibit polynomial equality invariants. Rather than solving arbitrary polynomial equations, we consider loop properties defined by a single quadratic invariant in any number of variables. We present a procedure that, given a quadratic equation, decides whether a loop with affine updates satisfying this equation exists. Furthermore, if the answer is positive, the procedure synthesises a loop and ensures its variables achieve infinitely many different values.

Cite as

S. Hitarth, George Kenison, Laura Kovács, and Anton Varonka. Linear Loop Synthesis for Quadratic Invariants. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 41:1-41:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hitarth_et_al:LIPIcs.STACS.2024.41,
  author =	{Hitarth, S. and Kenison, George and Kov\'{a}cs, Laura and Varonka, Anton},
  title =	{{Linear Loop Synthesis for Quadratic Invariants}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{41:1--41:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.41},
  URN =		{urn:nbn:de:0030-drops-197512},
  doi =		{10.4230/LIPIcs.STACS.2024.41},
  annote =	{Keywords: program synthesis, loop invariants, verification, Diophantine equations}
}
Document
Invited Talk
Algebraic Reasoning for (Un)Solvable Loops (Invited Talk)

Authors: Laura Kovács

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Loop invariants describe valid program properties that hold before and after every loop iteration. As such, loop invariants are the workhorses in formalizing loop semantics and automating the formal analysis and verification of programs with loops. While automatically synthesizing loop invariants is, in general, an uncomputable problem, when considering only single-path loops with linear updates (linear loops), the strongest polynomial invariant is in fact computable [Michael Karr, 1976; Markus Müller-Olm and Helmut Seidl, 2004; Laura Kovács, 2008; Ehud Hrushovski et al., 2018]. Yet, already for loops with "only" polynomial updates, computing the strongest invariant has been an open challenge since 2004 [Markus Müller-Olm and Helmut Seidl, 2004]. In this invited talk, we first present computability results on polynomial invariant synthesis for restricted polynomial loops, called solvable loops [Rodríguez-Carbonell and Kapur, 2004]. Key to solvable loops is that one can automatically compute invariants from closed-form solutions of algebraic recurrence equations that model the loop behaviour [Laura Kovács, 2008; Andreas Humenberger et al., 2017]. We also establish a technique for invariant synthesis for classes of loops that are not solvable, termed unsolvable loops [Daneshvar Amrollahi et al., 2022]. We next study the limits of computability in deriving the (strongest) polynomial invariants for arbitrary polynomial loops. We prove that computing the strongest polynomial invariant of arbitrary, single-path polynomial loops is very hard [Julian Müllner, 2023] - namely, it is at least as hard as the Skolem problem [Graham Everest et al., 2003; Terrence Tao, 2008], a prominent algebraic problem in the theory of linear recurrences. Going beyond single-path loops, we show that the strongest polynomial invariant is uncomputable already for multi-path polynomial loops with arbitrary quadratic polynomial updates [Laura Kovács and Anton Varonka, 2023].

Cite as

Laura Kovács. Algebraic Reasoning for (Un)Solvable Loops (Invited Talk). In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kovacs:LIPIcs.MFCS.2023.4,
  author =	{Kov\'{a}cs, Laura},
  title =	{{Algebraic Reasoning for (Un)Solvable Loops}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{4:1--4:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.4},
  URN =		{urn:nbn:de:0030-drops-185385},
  doi =		{10.4230/LIPIcs.MFCS.2023.4},
  annote =	{Keywords: Symbolic Computation, Formal Methods, Loop Analysis, Polynomial Invariants}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Positivity Problems for Reversible Linear Recurrence Sequences

Authors: George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
It is a longstanding open problem whether there is an algorithm to decide the Positivity Problem for linear recurrence sequences (LRS) over the integers, namely whether given such a sequence, all its terms are non-negative. Decidability is known for LRS of order 5 or less, i.e., for those sequences in which every new term depends linearly on the previous five (or fewer) terms. For simple LRS (i.e., those sequences whose characteristic polynomials have no repeated roots), decidability of Positivity is known up to order 9. In this paper, we focus on the important subclass of reversible LRS, i.e., those integer LRS ⟨u_n⟩_{n=0}^∞ whose bi-infinite completion ⟨u_n⟩_{n=-∞}^∞ also takes exclusively integer values; a typical example is the classical Fibonacci (bi-)sequence ⟨ … , 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, … ⟩. Our main results are that Positivity is decidable for reversible LRS of order 11 or less, and for simple reversible LRS of order 17 or less.

Cite as

George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell. Positivity Problems for Reversible Linear Recurrence Sequences. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 130:1-130:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.ICALP.2023.130,
  author =	{Kenison, George and Nieuwveld, Joris and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Positivity Problems for Reversible Linear Recurrence Sequences}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{130:1--130:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.130},
  URN =		{urn:nbn:de:0030-drops-181821},
  doi =		{10.4230/LIPIcs.ICALP.2023.130},
  annote =	{Keywords: The Positivity Problem, Linear Recurrence Sequences, Verification}
}
Document
On the Skolem Problem for Reversible Sequences

Authors: George Kenison

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Given an integer linear recurrence sequence ⟨X_n⟩, the Skolem Problem asks to determine whether there is a natural number n such that X_n = 0. Recent work by Lipton, Luca, Nieuwveld, Ouaknine, Purser, and Worrell proved that the Skolem Problem is decidable for a class of reversible sequences of order at most seven. Here we give an alternative proof of their result. Our novel approach employs a powerful result for Galois conjugates that lie on two concentric circles due to Dubickas and Smyth.

Cite as

George Kenison. On the Skolem Problem for Reversible Sequences. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 61:1-61:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kenison:LIPIcs.MFCS.2022.61,
  author =	{Kenison, George},
  title =	{{On the Skolem Problem for Reversible Sequences}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{61:1--61:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.61},
  URN =		{urn:nbn:de:0030-drops-168590},
  doi =		{10.4230/LIPIcs.MFCS.2022.61},
  annote =	{Keywords: The Skolem Problem, Linear Recurrences, Verification}
}
Document
Invited Talk
Holonomic Techniques, Periods, and Decision Problems (Invited Talk)

Authors: Joël Ouaknine

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
Holonomic techniques have deep roots going back to Wallis, Euler, and Gauss, and have evolved in modern times as an important subfield of computer algebra, thanks in large part to the work of Zeilberger and others over the past three decades (see, e.g., [Doron Zeilberger, 1990; Petkovšek et al., 1997]). In this talk, I give an overview of the area, and in particular present a select survey of known and original results on decision problems for holonomic sequences and functions. I also discuss some surprising connections to the theory of periods and exponential periods, which are classical objects of study in algebraic geometry and number theory; in particular, I relate the decidability of certain decision problems for holonomic sequences to deep conjectures about periods and exponential periods, notably those due to Kontsevich and Zagier. Parts of this exposition draws upon [George Kenison et al., 2021].

Cite as

Joël Ouaknine. Holonomic Techniques, Periods, and Decision Problems (Invited Talk). In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ouaknine:LIPIcs.MFCS.2021.3,
  author =	{Ouaknine, Jo\"{e}l},
  title =	{{Holonomic Techniques, Periods, and Decision Problems}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.3},
  URN =		{urn:nbn:de:0030-drops-144431},
  doi =		{10.4230/LIPIcs.MFCS.2021.3},
  annote =	{Keywords: Holonomic and hypergeometric sequences, Inequality problems, Continued fractions, Periods}
}
Document
On Positivity and Minimality for Second-Order Holonomic Sequences

Authors: George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
An infinite sequence ⟨u_n⟩_n of real numbers is holonomic (also known as P-recursive or P-finite) if it satisfies a linear recurrence relation with polynomial coefficients. Such a sequence is said to be positive if each u_n ≥ 0, and minimal if, given any other linearly independent sequence ⟨v_n⟩_n satisfying the same recurrence relation, the ratio u_n/v_n → 0 as n → ∞. In this paper we give a Turing reduction of the problem of deciding positivity of second-order holonomic sequences to that of deciding minimality of such sequences. More specifically, we give a procedure for determining positivity of second-order holonomic sequences that terminates in all but an exceptional number of cases, and we show that in these exceptional cases positivity can be determined using an oracle for deciding minimality.

Cite as

George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell. On Positivity and Minimality for Second-Order Holonomic Sequences. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 67:1-67:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.MFCS.2021.67,
  author =	{Kenison, George and Klurman, Oleksiy and Lefaucheux, Engel and Luca, Florian and Moree, Pieter and Ouaknine, Jo\"{e}l and Whiteland, Markus A. and Worrell, James},
  title =	{{On Positivity and Minimality for Second-Order Holonomic Sequences}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{67:1--67:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.67},
  URN =		{urn:nbn:de:0030-drops-145071},
  doi =		{10.4230/LIPIcs.MFCS.2021.67},
  annote =	{Keywords: Holonomic sequences, Minimal solutions, Positivity Problem}
}
  • Refine by Author
  • 5 Kenison, George
  • 3 Ouaknine, Joël
  • 2 Kovács, Laura
  • 2 Worrell, James
  • 1 Hitarth, S.
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Verification
  • 1 Continued fractions
  • 1 Diophantine equations
  • 1 Formal Methods
  • 1 Holonomic and hypergeometric sequences
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2021
  • 2 2023
  • 2 2024
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail