5 Search Results for "Kiss, Peter"


Document
Track A: Algorithms, Complexity and Games
Sublinear Algorithms for TSP via Path Covers

Authors: Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study sublinear time algorithms for the traveling salesman problem (TSP). First, we focus on the closely related maximum path cover problem, which asks for a collection of vertex disjoint paths that include the maximum number of edges. We show that for any fixed ε > 0, there is an algorithm that (1/2 - ε)-approximates the maximum path cover size of an n-vertex graph in Õ(n) time. This improves upon a (3/8-ε)-approximate Õ(n √n)-time algorithm of Chen, Kannan, and Khanna [ICALP'20]. Equipped with our path cover algorithm, we give an Õ(n) time algorithm that estimates the cost of (1,2)-TSP within a factor of (1.5+ε) which is an improvement over a folklore (1.75 + ε)-approximate Õ(n)-time algorithm, as well as a (1.625+ε)-approximate Õ(n√n)-time algorithm of [CHK ICALP'20]. For graphic TSP, we present an Õ(n) algorithm that estimates the cost of graphic TSP within a factor of 1.83 which is an improvement over a 1.92-approximate Õ(n) time algorithm due to [CHK ICALP'20, Behnezhad FOCS'21]. We show that the approximation can be further improved to 1.66 using n^{2-Ω(1)} time. All of our Õ(n) time algorithms are information-theoretically time-optimal up to polylog n factors. Additionally, we show that our approximation guarantees for path cover and (1,2)-TSP hit a natural barrier: We show better approximations require better sublinear time algorithms for the well-studied maximum matching problem.

Cite as

Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear Algorithms for TSP via Path Covers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{behnezhad_et_al:LIPIcs.ICALP.2024.19,
  author =	{Behnezhad, Soheil and Roghani, Mohammad and Rubinstein, Aviad and Saberi, Amin},
  title =	{{Sublinear Algorithms for TSP via Path Covers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.19},
  URN =		{urn:nbn:de:0030-drops-201623},
  doi =		{10.4230/LIPIcs.ICALP.2024.19},
  annote =	{Keywords: Sublinear Algorithms, Traveling Salesman Problem, Approximation Algorithm, (1, 2)-TSP, Graphic TSP}
}
Document
Track A: Algorithms, Complexity and Games
Decremental Matching in General Weighted Graphs

Authors: Aditi Dudeja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we consider the problem of maintaining a (1-ε)-approximate maximum weight matching in a dynamic graph G, while the adversary makes changes to the edges of the graph. In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and Peng [Manoj Gupta and Richard Peng, 2013] gave an algorithm for this problem with an update time of Õ_ε(√m). We study a natural relaxation of this problem, namely the decremental model, where the adversary is only allowed to delete edges. For the unweighted version of this problem in general (possibly, non-bipartite) graphs, [Sepehr Assadi et al., 2022] gave a decremental algorithm with update time O_ε(poly(log n)). However, beating Õ_ε(√m) update time remained an open problem for the weighted version in general graphs. In this paper, we bridge the gap between unweighted and weighted general graphs for the decremental setting. We give a O_ε(poly(log n)) update time algorithm that maintains a (1-ε) approximate maximum weight matching under adversarial deletions. Like the decremental algorithm of [Sepehr Assadi et al., 2022], our algorithm is randomized, but works against an adaptive adversary. It also matches the time bound for the unweighted version upto dependencies on ε and a log R factor, where R is the ratio between the maximum and minimum edge weight in G.

Cite as

Aditi Dudeja. Decremental Matching in General Weighted Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 59:1-59:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudeja:LIPIcs.ICALP.2024.59,
  author =	{Dudeja, Aditi},
  title =	{{Decremental Matching in General Weighted Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{59:1--59:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.59},
  URN =		{urn:nbn:de:0030-drops-202020},
  doi =		{10.4230/LIPIcs.ICALP.2024.59},
  annote =	{Keywords: Weighted Matching, Dynamic Algorithms, Adaptive Adversary}
}
Document
Incremental (1-ε)-Approximate Dynamic Matching in O(poly(1/ε)) Update Time

Authors: Joakim Blikstad and Peter Kiss

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In the dynamic approximate maximum bipartite matching problem we are given bipartite graph G undergoing updates and our goal is to maintain a matching of G which is large compared the maximum matching size μ(G). We define a dynamic matching algorithm to be α (respectively (α, β))-approximate if it maintains matching M such that at all times |M | ≥ μ(G) ⋅ α (respectively |M| ≥ μ(G) ⋅ α - β). We present the first deterministic (1-ε)-approximate dynamic matching algorithm with O(poly(ε^{-1})) amortized update time for graphs undergoing edge insertions. Previous solutions either required super-constant [Gupta FSTTCS'14, Bhattacharya-Kiss-Saranurak SODA'23] or exponential in 1/ε [Grandoni-Leonardi-Sankowski-Schwiegelshohn-Solomon SODA'19] update time. Our implementation is arguably simpler than the mentioned algorithms and its description is self contained. Moreover, we show that if we allow for additive (1, ε⋅n)-approximation our algorithm seamlessly extends to also handle vertex deletions, on top of edge insertions. This makes our algorithm one of the few small update time algorithms for (1-ε)-approximate dynamic matching allowing for updates both increasing and decreasing the maximum matching size of G in a fully dynamic manner. Our algorithm relies on the weighted variant of the celebrated Edge-Degree-Constrained-Subgraph (EDCS) datastructure introduced by [Bernstein-Stein ICALP'15]. As far as we are aware we introduce the first application of the weighted-EDCS for arbitrarily dense graphs. We also present a significantly simplified proof for the approximation ratio of weighed-EDCS as a matching sparsifier compared to [Bernstein-Stein], as well as simple descriptions of a fractional matching and fractional vertex cover defined on top of the EDCS. Considering the wide range of applications EDCS has found in settings such as streaming, sub-linear, stochastic and more we hope our techniques will be of independent research interest outside of the dynamic setting.

Cite as

Joakim Blikstad and Peter Kiss. Incremental (1-ε)-Approximate Dynamic Matching in O(poly(1/ε)) Update Time. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{blikstad_et_al:LIPIcs.ESA.2023.22,
  author =	{Blikstad, Joakim and Kiss, Peter},
  title =	{{Incremental (1-\epsilon)-Approximate Dynamic Matching in O(poly(1/\epsilon)) Update Time}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.22},
  URN =		{urn:nbn:de:0030-drops-186756},
  doi =		{10.4230/LIPIcs.ESA.2023.22},
  annote =	{Keywords: Bipartite Matching, Incremental Matching, Dynamic Algorithms, Approximation Algorithms, EDCS}
}
Document
Deterministic Dynamic Matching in Worst-Case Update Time

Authors: Peter Kiss

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We present deterministic algorithms for maintaining a (3/2 + ε) and (2 + ε)-approximate maximum matching in a fully dynamic graph with worst-case update times Ô(√n) and Õ(1) respectively. The fastest known deterministic worst-case update time algorithms for achieving approximation ratio (2 - δ) (for any δ > 0) and (2 + ε) were both shown by Roghani et al. [arXiv'2021] with update times O(n^{3/4}) and O_ε(√n) respectively. We close the gap between worst-case and amortized algorithms for the two approximation ratios as the best deterministic amortized update times for the problem are O_ε(√n) and Õ(1) which were shown in Bernstein and Stein [SODA'2021] and Bhattacharya and Kiss [ICALP'2021] respectively. The algorithm achieving (3/2 + ε) approximation builds on the EDCS concept introduced by the influential paper of Bernstein and Stein [ICALP'2015]. Say that H is a (α, δ)-approximate matching sparsifier if at all times H satisfies that μ(H) ⋅ α + δ ⋅ n ≥ μ(G) (define (α, δ)-approximation similarly for matchings). We show how to maintain a locally damaged version of the EDCS which is a (3/2 + ε, δ)-approximate matching sparsifier. We further show how to reduce the maintenance of an α-approximate maximum matching to the maintenance of an (α, δ)-approximate maximum matching building based on an observation of Assadi et al. [EC'2016]. Our reduction requires an update time blow-up of Ô(1) or Õ(1) and is deterministic or randomized against an adaptive adversary respectively. To achieve (2 + ε)-approximation we improve on the update time guarantee of an algorithm of Bhattacharya and Kiss [ICALP'2021]. In order to achieve both results we explicitly state a method implicitly used in Nanongkai and Saranurak [STOC'2017] and Bernstein et al. [arXiv'2020] which allows to transform dynamic algorithms capable of processing the input in batches to a dynamic algorithms with worst-case update time. Independent Work: Independently and concurrently to our work Grandoni et al. [arXiv'2021] has presented a fully dynamic algorithm for maintaining a (3/2 + ε)-approximate maximum matching with deterministic worst-case update time O_ε(√n).

Cite as

Peter Kiss. Deterministic Dynamic Matching in Worst-Case Update Time. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 94:1-94:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kiss:LIPIcs.ITCS.2022.94,
  author =	{Kiss, Peter},
  title =	{{Deterministic Dynamic Matching in Worst-Case Update Time}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{94:1--94:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.94},
  URN =		{urn:nbn:de:0030-drops-156909},
  doi =		{10.4230/LIPIcs.ITCS.2022.94},
  annote =	{Keywords: Dynamic Algorithms, Matching, Approximate Matching, EDCS}
}
Document
Track A: Algorithms, Complexity and Games
Deterministic Rounding of Dynamic Fractional Matchings

Authors: Sayan Bhattacharya and Peter Kiss

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We present a framework for deterministically rounding a dynamic fractional matching. Applying our framework in a black-box manner on top of existing fractional matching algorithms, we derive the following new results: (1) The first deterministic algorithm for maintaining a (2-δ)-approximate maximum matching in a fully dynamic bipartite graph, in arbitrarily small polynomial update time. (2) The first deterministic algorithm for maintaining a (1+δ)-approximate maximum matching in a decremental bipartite graph, in polylogarithmic update time. (3) The first deterministic algorithm for maintaining a (2+δ)-approximate maximum matching in a fully dynamic general graph, in small polylogarithmic (specifically, O(log⁴ n)) update time. These results are respectively obtained by applying our framework on top of the fractional matching algorithms of Bhattacharya et al. [STOC'16], Bernstein et al. [FOCS'20], and Bhattacharya and Kulkarni [SODA'19]. Previously, there were two known general-purpose rounding schemes for dynamic fractional matchings. Both these schemes, by Arar et al. [ICALP'18] and Wajc [STOC'20], were randomized. Our rounding scheme works by maintaining a good matching-sparsifier with bounded arboricity, and then applying the algorithm of Peleg and Solomon [SODA'16] to maintain a near-optimal matching in this low arboricity graph. To the best of our knowledge, this is the first dynamic matching algorithm that works on general graphs by using an algorithm for low-arboricity graphs as a black-box subroutine. This feature of our rounding scheme might be of independent interest.

Cite as

Sayan Bhattacharya and Peter Kiss. Deterministic Rounding of Dynamic Fractional Matchings. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.ICALP.2021.27,
  author =	{Bhattacharya, Sayan and Kiss, Peter},
  title =	{{Deterministic Rounding of Dynamic Fractional Matchings}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.27},
  URN =		{urn:nbn:de:0030-drops-140960},
  doi =		{10.4230/LIPIcs.ICALP.2021.27},
  annote =	{Keywords: Matching, Dynamic Algorithms, Data Structures}
}
  • Refine by Author
  • 3 Kiss, Peter
  • 1 Behnezhad, Soheil
  • 1 Bhattacharya, Sayan
  • 1 Blikstad, Joakim
  • 1 Dudeja, Aditi
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Dynamic graph algorithms
  • 1 Theory of computation
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Streaming, sublinear and near linear time algorithms

  • Refine by Keyword
  • 4 Dynamic Algorithms
  • 2 EDCS
  • 2 Matching
  • 1 (1
  • 1 2)-TSP
  • Show More...

  • Refine by Type
  • 5 document

  • Refine by Publication Year
  • 2 2024
  • 1 2021
  • 1 2022
  • 1 2023