Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)
Hubert Wagner. Slice, Simplify and Stitch: Topology-Preserving Simplification Scheme for Massive Voxel Data. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 60:1-60:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{wagner:LIPIcs.SoCG.2023.60, author = {Wagner, Hubert}, title = {{Slice, Simplify and Stitch: Topology-Preserving Simplification Scheme for Massive Voxel Data}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {60:1--60:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.60}, URN = {urn:nbn:de:0030-drops-179107}, doi = {10.4230/LIPIcs.SoCG.2023.60}, annote = {Keywords: Computational topology, topological data analysis, topological image analysis, persistent homology, persistence diagram, discrete Morse theory, algorithm engineering, implementation, voxel data, volume data, image data} }
Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)
Youjia Zhou, Kevin Knudson, and Bei Wang. Visual Demo of Discrete Stratified Morse Theory (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 82:1-82:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{zhou_et_al:LIPIcs.SoCG.2020.82, author = {Zhou, Youjia and Knudson, Kevin and Wang, Bei}, title = {{Visual Demo of Discrete Stratified Morse Theory}}, booktitle = {36th International Symposium on Computational Geometry (SoCG 2020)}, pages = {82:1--82:4}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-143-6}, ISSN = {1868-8969}, year = {2020}, volume = {164}, editor = {Cabello, Sergio and Chen, Danny Z.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.82}, URN = {urn:nbn:de:0030-drops-122409}, doi = {10.4230/LIPIcs.SoCG.2020.82}, annote = {Keywords: Discrete Morse theory, stratified Morse theory, discrete stratified Morse theory, topological data analysis, data visualization} }
Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)
Kevin Knudson and Bei Wang. Discrete Stratified Morse Theory: A User's Guide. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{knudson_et_al:LIPIcs.SoCG.2018.54, author = {Knudson, Kevin and Wang, Bei}, title = {{Discrete Stratified Morse Theory: A User's Guide}}, booktitle = {34th International Symposium on Computational Geometry (SoCG 2018)}, pages = {54:1--54:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-066-8}, ISSN = {1868-8969}, year = {2018}, volume = {99}, editor = {Speckmann, Bettina and T\'{o}th, Csaba D.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.54}, URN = {urn:nbn:de:0030-drops-87671}, doi = {10.4230/LIPIcs.SoCG.2018.54}, annote = {Keywords: Discrete Morse theory, stratified Morse theory, topological data analysis} }
Feedback for Dagstuhl Publishing