5 Search Results for "Leitão, João"


Volume

LIPIcs, Volume 95

21st International Conference on Principles of Distributed Systems (OPODIS 2017)

OPODIS 2017, December 18-20, 2017, Lisbon, Portugal

Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão

Document
Robustness Against Transactional Causal Consistency

Authors: Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Distributed storage systems and databases are widely used by various types of applications. Transactional access to these storage systems is an important abstraction allowing application programmers to consider blocks of actions (i.e., transactions) as executing atomically. For performance reasons, the consistency models implemented by modern databases are weaker than the standard serializability model, which corresponds to the atomicity abstraction of transactions executing over a sequentially consistent memory. Causal consistency for instance is one such model that is widely used in practice. In this paper, we investigate application-specific relationships between several variations of causal consistency and we address the issue of verifying automatically if a given transactional program is robust against causal consistency, i.e., all its behaviors when executed over an arbitrary causally consistent database are serializable. We show that programs without write-write races have the same set of behaviors under all these variations, and we show that checking robustness is polynomial time reducible to a state reachability problem in transactional programs over a sequentially consistent shared memory. A surprising corollary of the latter result is that causal consistency variations which admit incomparable sets of behaviors admit comparable sets of robust programs. This reduction also opens the door to leveraging existing methods and tools for the verification of concurrent programs (assuming sequential consistency) for reasoning about programs running over causally consistent databases. Furthermore, it allows to establish that the problem of checking robustness is decidable when the programs executed at different sites are finite-state.

Cite as

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. Robustness Against Transactional Causal Consistency. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{beillahi_et_al:LIPIcs.CONCUR.2019.30,
  author =	{Beillahi, Sidi Mohamed and Bouajjani, Ahmed and Enea, Constantin},
  title =	{{Robustness Against Transactional Causal Consistency}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{30:1--30:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.30},
  URN =		{urn:nbn:de:0030-drops-109321},
  doi =		{10.4230/LIPIcs.CONCUR.2019.30},
  annote =	{Keywords: Distributed Databases, Causal Consistency, Model Checking}
}
Document
Version Control Is for Your Data Too

Authors: Gowtham Kaki, KC Sivaramakrishnan, and Suresh Jagannathan

Published in: LIPIcs, Volume 136, 3rd Summit on Advances in Programming Languages (SNAPL 2019)


Abstract
Programmers regularly use distributed version control systems (DVCS) such as Git to facilitate collaborative software development. The primary purpose of a DVCS is to maintain integrity of source code in the presence of concurrent, possibly conflicting edits from collaborators. In addition to safely merging concurrent non-conflicting edits, a DVCS extensively tracks source code provenance to help programmers contextualize and resolve conflicts. Provenance also facilitates debugging by letting programmers see diffs between versions and quickly find those edits that introduced the offending conflict (e.g., via git blame). In this paper, we posit that analogous workflows to collaborative software development also arise in distributed software execution; we argue that the characteristics that make a DVCS an ideal fit for the former also make it an ideal fit for the latter. Building on this observation, we propose a distributed programming model, called carmot that views distributed shared state as an entity evolving in time, manifested as a sequence of persistent versions, and relies on an explicitly defined merge semantics to reconcile concurrent conflicting versions. We show examples demonstrating how carmot simplifies distributed programming, while also enabling novel workflows integral to modern applications such as blockchains. We also describe a prototype implementation of carmot that we use to evaluate its practicality.

Cite as

Gowtham Kaki, KC Sivaramakrishnan, and Suresh Jagannathan. Version Control Is for Your Data Too. In 3rd Summit on Advances in Programming Languages (SNAPL 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 136, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kaki_et_al:LIPIcs.SNAPL.2019.8,
  author =	{Kaki, Gowtham and Sivaramakrishnan, KC and Jagannathan, Suresh},
  title =	{{Version Control Is for Your Data Too}},
  booktitle =	{3rd Summit on Advances in Programming Languages (SNAPL 2019)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-113-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{136},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2019.8},
  URN =		{urn:nbn:de:0030-drops-105516},
  doi =		{10.4230/LIPIcs.SNAPL.2019.8},
  annote =	{Keywords: replication, distributed systems, version control}
}
Document
Complete Volume
LIPIcs, Volume 95, OPODIS'17, Complete Volume

Authors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão

Published in: LIPIcs, Volume 95, 21st International Conference on Principles of Distributed Systems (OPODIS 2017)


Abstract
LIPIcs, Volume 95, OPODIS'17, Complete Volume

Cite as

James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão. LIPIcs, Volume 95, OPODIS'17, Complete Volume. In 21st International Conference on Principles of Distributed Systems (OPODIS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 95, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Proceedings{aspnes_et_al:LIPIcs.OPODIS.2017,
  title =	{{LIPIcs, Volume 95, OPODIS'17, Complete Volume}},
  booktitle =	{21st International Conference on Principles of Distributed Systems (OPODIS 2017)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-061-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{95},
  editor =	{Aspnes, James and Bessani, Alysson and Felber, Pascal and Leit\~{a}o, Jo\~{a}o},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2017},
  URN =		{urn:nbn:de:0030-drops-86786},
  doi =		{10.4230/LIPIcs.OPODIS.2017},
  annote =	{Keywords: Distributed Systems, Performance of Systems, Concurrent Programming, Data Structures, Modes of Computation}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão

Published in: LIPIcs, Volume 95, 21st International Conference on Principles of Distributed Systems (OPODIS 2017)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão. Front Matter, Table of Contents, Preface, Conference Organization. In 21st International Conference on Principles of Distributed Systems (OPODIS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 95, pp. 0:i-0:xx, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{aspnes_et_al:LIPIcs.OPODIS.2017.0,
  author =	{Aspnes, James and Bessani, Alysson and Felber, Pascal and Leit\~{a}o, Jo\~{a}o},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{21st International Conference on Principles of Distributed Systems (OPODIS 2017)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-061-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{95},
  editor =	{Aspnes, James and Bessani, Alysson and Felber, Pascal and Leit\~{a}o, Jo\~{a}o},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2017.0},
  URN =		{urn:nbn:de:0030-drops-86236},
  doi =		{10.4230/LIPIcs.OPODIS.2017.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
  • Refine by Author
  • 2 Aspnes, James
  • 2 Bessani, Alysson
  • 2 Felber, Pascal
  • 2 Leitão, João
  • 1 Beillahi, Sidi Mohamed
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Distributed programming languages
  • 1 Software and its engineering → API languages
  • 1 Software and its engineering → Software configuration management and version control systems
  • 1 Theory of computation → Program verification

  • Refine by Keyword
  • 1 Causal Consistency
  • 1 Conference Organization
  • 1 Distributed Databases
  • 1 Distributed Systems, Performance of Systems, Concurrent Programming, Data Structures, Modes of Computation
  • 1 Front Matter
  • Show More...

  • Refine by Type
  • 4 document
  • 1 volume

  • Refine by Publication Year
  • 3 2018
  • 2 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail