7 Search Results for "Lepigre, Rodolphe"


Document
Qafny: A Quantum-Program Verifier

Authors: Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Because of the probabilistic/nondeterministic behavior of quantum programs, it is highly advisable to verify them formally to ensure that they correctly implement their specifications. Formal verification, however, also traditionally requires significant effort. To address this challenge, we present Qafny, an automated proof system based on the program verifier Dafny and designed for verifying quantum programs. At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations modeled within a classical separation logic framework. We prove the soundness and completeness of our proof system and implement a prototype compiler that transforms Qafny programs and specifications into Dafny for automated verification purposes. We then illustrate the utility of Qafny’s automated capabilities in efficiently verifying important quantum algorithms, including quantum-walk algorithms, Grover’s algorithm, and Shor’s algorithm.

Cite as

Liyi Li, Mingwei Zhu, Rance Cleaveland, Alexander Nicolellis, Yi Lee, Le Chang, and Xiaodi Wu. Qafny: A Quantum-Program Verifier. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 24:1-24:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.24,
  author =	{Li, Liyi and Zhu, Mingwei and Cleaveland, Rance and Nicolellis, Alexander and Lee, Yi and Chang, Le and Wu, Xiaodi},
  title =	{{Qafny: A Quantum-Program Verifier}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{24:1--24:31},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.24},
  URN =		{urn:nbn:de:0030-drops-208735},
  doi =		{10.4230/LIPIcs.ECOOP.2024.24},
  annote =	{Keywords: Quantum Computing, Automated Verification, Separation Logic}
}
Document
Matching Plans for Frame Inference in Compositional Reasoning

Authors: Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Petar Maksimović, and Philippa Gardner

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
The use of function specifications to reason about function calls and the manipulation of user-defined predicates are two essential ingredients of modern compositional verification tools based on separation logic. To execute these operations successfully, these tools must be able to solve the frame inference problem, that is, to understand which parts of the state are relevant for the operation at hand. We introduce matching plans, a concept that is used in the Gillian verification platform to automate frame inference efficiently. We extract matching plans and their automation machinery from the Gillian implementation and present them in a tool-agnostic way, making the Gillian approach available to the broader verification community as a verification-tool design pattern.

Cite as

Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Petar Maksimović, and Philippa Gardner. Matching Plans for Frame Inference in Compositional Reasoning. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 26:1-26:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loow_et_al:LIPIcs.ECOOP.2024.26,
  author =	{L\"{o}\"{o}w, Andreas and Nantes-Sobrinho, Daniele and Ayoun, Sacha-\'{E}lie and Maksimovi\'{c}, Petar and Gardner, Philippa},
  title =	{{Matching Plans for Frame Inference in Compositional Reasoning}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{26:1--26:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.26},
  URN =		{urn:nbn:de:0030-drops-208751},
  doi =		{10.4230/LIPIcs.ECOOP.2024.26},
  annote =	{Keywords: Compositional reasoning, separation logic, frame inference}
}
Document
Verifying Lock-Free Search Structure Templates

Authors: Nisarg Patel, Dennis Shasha, and Thomas Wies

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
We present and verify template algorithms for lock-free concurrent search structures that cover a broad range of existing implementations based on lists and skiplists. Our linearizability proofs are fully mechanized in the concurrent separation logic Iris. The proofs are modular and cover the broader design space of the underlying algorithms by parameterizing the verification over aspects such as the low-level representation of nodes and the style of data structure maintenance. As a further technical contribution, we present a mechanization of a recently proposed method for reasoning about future-dependent linearization points using hindsight arguments. The mechanization builds on Iris' support for prophecy reasoning and user-defined ghost resources. We demonstrate that the method can help to reduce the proof effort compared to direct prophecy-based proofs.

Cite as

Nisarg Patel, Dennis Shasha, and Thomas Wies. Verifying Lock-Free Search Structure Templates. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 30:1-30:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{patel_et_al:LIPIcs.ECOOP.2024.30,
  author =	{Patel, Nisarg and Shasha, Dennis and Wies, Thomas},
  title =	{{Verifying Lock-Free Search Structure Templates}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{30:1--30:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.30},
  URN =		{urn:nbn:de:0030-drops-208797},
  doi =		{10.4230/LIPIcs.ECOOP.2024.30},
  annote =	{Keywords: skiplists, lock-free, separation logic, linearizability, future-dependent linearization points, hindsight reasoning}
}
Document
Categorical Models of Subtyping

Authors: Greta Coraglia and Jacopo Emmenegger

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Most categorical models for dependent types have traditionally been heavily set based: contexts form a category, and for each we have a set of types in said context - and for each type a set of terms of said type. This is the case for categories with families, categories with attributes, and natural models; in particular, all of them can be traced back to certain discrete Grothendieck fibrations. We extend this intuition to the case of general, not necessarily discrete, fibrations, so that over a given context one has not only a set but a category of types. We argue that the added structure can be attributed to a notion of subtyping that shares many features with that of coercive subtyping, in the sense that it is the product of thinking about subtyping as an abbreviation mechanism: we say that a given type A' is a subtype of A if there is a unique coercion from A' to A. Whenever we need a term of type A, then, it suffices to have a term of type A', which we can "plug-in" into A. For this version of subtyping we provide rules, coherences, and explicit models, and we compare and contrast it to coercive subtyping as introduced by Z. Luo and others. We conclude by suggesting how the tools we present can be employed in finding appropriate rules relating subtyping and certain type constructors.

Cite as

Greta Coraglia and Jacopo Emmenegger. Categorical Models of Subtyping. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{coraglia_et_al:LIPIcs.TYPES.2023.3,
  author =	{Coraglia, Greta and Emmenegger, Jacopo},
  title =	{{Categorical Models of Subtyping}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.3},
  URN =		{urn:nbn:de:0030-drops-204811},
  doi =		{10.4230/LIPIcs.TYPES.2023.3},
  annote =	{Keywords: dependent types, subtyping, coercive subtyping, categorical semantics, categories with families, monad}
}
Document
Invited Talk
Interactive and Automated Proofs in Modal Separation Logic (Invited Talk)

Authors: Robbert Krebbers

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
In program verification, it is common to embed a high-level object logic into the meta logic of a proof assistant to hide low-level aspects of the verification. To verify imperative and concurrent programs, separation logic hides explicit reasoning about heaps and pointer disjointness. To verify programs with cyclic features such as modules or higher-order state, modal logic provides modalities to hide explicit reasoning about step-indices that are used to stratify recursion. The meta logic of proof assistants such as Coq is well suited to embed high-level object logics and prove their soundness. However, proof assistants such as Coq do not have native infrastructure to facilitate proofs in embedded logics - their proof contexts and built-in tactics for interactive and automated proofs are tailored to the connectives of the meta logic, and do not extend to those of the object logic. This results in proofs that are at a too low level of abstraction because they are cluttered with bookkeeping code related to manipulating the object logic. In this talk I will describe our work in the Iris project to address this problem - first for interactive proofs, and then for semi-automated proofs. The Iris Proof Mode provides high-level tactics for interactive proofs in higher-order concurrent separation logic with modalities. Recent work on RefinedC and Diaframe have built on top of the Iris Proof Mode to obtain proof automation for low-level C programs and fine-grained concurrent programs.

Cite as

Robbert Krebbers. Interactive and Automated Proofs in Modal Separation Logic (Invited Talk). In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{krebbers:LIPIcs.ITP.2023.2,
  author =	{Krebbers, Robbert},
  title =	{{Interactive and Automated Proofs in Modal Separation Logic}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.2},
  URN =		{urn:nbn:de:0030-drops-183770},
  doi =		{10.4230/LIPIcs.ITP.2023.2},
  annote =	{Keywords: Program Verification, Separation Logic, Step-Indexing, Modal Logic, Interactive Theorem Proving, Proof Automation, Iris, Coq}
}
Document
System Description
The New Rewriting Engine of Dedukti (System Description)

Authors: Gabriel Hondet and Frédéric Blanqui

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
Dedukti is a type-checker for the λΠ-calculus modulo rewriting, an extension of Edinburgh’s logical framework LF where functions and type symbols can be defined by rewrite rules. It therefore contains an engine for rewriting LF terms and types according to the rewrite rules given by the user. A key component of this engine is the matching algorithm to find which rules can be fired. In this paper, we describe the class of rewrite rules supported by Dedukti and the new implementation of the matching algorithm. Dedukti supports non-linear rewrite rules on terms with binders using higher-order pattern-matching as in Combinatory Reduction Systems (CRS). The new matching algorithm extends the technique of decision trees introduced by Luc Maranget in the OCaml compiler to this more general context.

Cite as

Gabriel Hondet and Frédéric Blanqui. The New Rewriting Engine of Dedukti (System Description). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 35:1-35:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{hondet_et_al:LIPIcs.FSCD.2020.35,
  author =	{Hondet, Gabriel and Blanqui, Fr\'{e}d\'{e}ric},
  title =	{{The New Rewriting Engine of Dedukti}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{35:1--35:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.35},
  URN =		{urn:nbn:de:0030-drops-123577},
  doi =		{10.4230/LIPIcs.FSCD.2020.35},
  annote =	{Keywords: rewriting, higher-order pattern-matching, decision trees}
}
Document
PML2: Integrated Program Verification in ML

Authors: Rodolphe Lepigre

Published in: LIPIcs, Volume 104, 23rd International Conference on Types for Proofs and Programs (TYPES 2017)


Abstract
We present the PML_2 language, which provides a uniform environment for programming, and for proving properties of programs in an ML-like setting. The language is Curry-style and call-by-value, it provides a control operator (interpreted in terms of classical logic), it supports general recursion and a very general form of (implicit, non-coercive) subtyping. In the system, equational properties of programs are expressed using two new type formers, and they are proved by constructing terminating programs. Although proofs rely heavily on equational reasoning, equalities are exclusively managed by the type-checker. This means that the user only has to choose which equality to use, and not where to use it, as is usually done in mathematical proofs. In the system, writing proofs mostly amounts to applying lemmas (possibly recursive function calls), and to perform case analyses (pattern matchings).

Cite as

Rodolphe Lepigre. PML2: Integrated Program Verification in ML. In 23rd International Conference on Types for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 104, pp. 4:1-4:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{lepigre:LIPIcs.TYPES.2017.4,
  author =	{Lepigre, Rodolphe},
  title =	{{PML2: Integrated Program Verification in ML}},
  booktitle =	{23rd International Conference on Types for Proofs and Programs (TYPES 2017)},
  pages =	{4:1--4:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-071-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{104},
  editor =	{Abel, Andreas and Nordvall Forsberg, Fredrik and Kaposi, Ambrus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2017.4},
  URN =		{urn:nbn:de:0030-drops-100521},
  doi =		{10.4230/LIPIcs.TYPES.2017.4},
  annote =	{Keywords: program verification, classical logic, ML-like language, termination checking, Curry-style quantification, implicit subtyping}
}
  • Refine by Author
  • 1 Ayoun, Sacha-Élie
  • 1 Blanqui, Frédéric
  • 1 Chang, Le
  • 1 Cleaveland, Rance
  • 1 Coraglia, Greta
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Separation logic
  • 2 Theory of computation → Automated reasoning
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Program verification
  • 1 Software and its engineering → Software verification
  • Show More...

  • Refine by Keyword
  • 2 Separation Logic
  • 2 separation logic
  • 1 Automated Verification
  • 1 Compositional reasoning
  • 1 Coq
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 4 2024
  • 1 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail