27 Search Results for "Neykova, Rumyana"


Volume

OASIcs, Volume 43

2014 Imperial College Computing Student Workshop

ICCSW 2014, September 25-26, 2014, London, United Kingdom

Editors: Rumyana Neykova and Nicholas Ng

Document
Artifact
Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

Authors: Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida

Published in: DARTS, Volume 8, Issue 2, Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
This artifact contains a version of MultiCrusty, a Rust library designed for writing and checking communication protocols following the Affine Multiparty Session Types theory introduced in our ECOOP'22 paper. MultiCrusty can work, and should be used, with Scribble [Yoshida et al., 2014] and kMC [{Julien} {Lange} and {Nobuko} {Yoshida}, 2019]: with the former tool, users can write correct global protocols and project them onto local Rust types defined within MultiCrusty, this approach is qualified as top-down; while the latter tool allows to check local Rust types written by users, this approach is qualified as bottom-up. Our artifact contains those three tools, their respective source files, as well as the different examples and benchmarks introduced in our paper, all together within a Docker image.

Cite as

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact). In Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 2, pp. 9:1-9:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{lagaillardie_et_al:DARTS.8.2.9,
  author =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  title =	{{Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)}},
  pages =	{9:1--9:16},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.2.9},
  URN =		{urn:nbn:de:0030-drops-162075},
  doi =		{10.4230/DARTS.8.2.9},
  annote =	{Keywords: Rust language, affine multiparty session types, failures, cancellation}
}
Document
Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

Authors: Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
Communicating systems comprise diverse software components across networks. To ensure their robustness, modern programming languages such as Rust provide both strongly typed channels, whose usage is guaranteed to be affine (at most once), and cancellation operations over binary channels. For coordinating components to correctly communicate and synchronise with each other, we use the structuring mechanism from multiparty session types, extending it with affine communication channels and implicit/explicit cancellation mechanisms. This new typing discipline, affine multiparty session types (AMPST), ensures cancellation termination of multiple, independently running components and guarantees that communication will not get stuck due to error or abrupt termination. Guided by AMPST, we implemented an automated generation tool (MultiCrusty) of Rust APIs associated with cancellation termination algorithms, by which the Rust compiler auto-detects unsafe programs. Our evaluation shows that MultiCrusty provides an efficient mechanism for communication, synchronisation and propagation of the notifications of cancellation for arbitrary processes. We have implemented several usecases, including popular application protocols (OAuth, SMTP), and protocols with exception handling patterns (circuit breaker, distributed logging).

Cite as

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 4:1-4:29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lagaillardie_et_al:LIPIcs.ECOOP.2022.4,
  author =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  title =	{{Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{4:1--4:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.4},
  URN =		{urn:nbn:de:0030-drops-162324},
  doi =		{10.4230/LIPIcs.ECOOP.2022.4},
  annote =	{Keywords: Rust language, affine multiparty session types, failures, cancellation}
}
Document
Artifact
Multiparty Session Programming with Global Protocol Combinators (Artifact)

Authors: Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen

Published in: DARTS, Volume 6, Issue 2, Special Issue of the 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
In the paper "Multiparty Session Programming with Global Protocol Combinators", we introduce a library, ocaml-mpst for programming with global combinators - a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours for all processes in a protocol are inferred at once from a global combinator. Our approach enables fully-static verification and implementation of the whole protocol, from the protocol specification to the process implementations, to happen in the same language. This artifact is the source code of ocaml-mpst, with all the examples and benchmarks discussed in the paper.

Cite as

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty Session Programming with Global Protocol Combinators (Artifact). In Special Issue of the 34th European Conference on Object-Oriented Programming (ECOOP 2020). Dagstuhl Artifacts Series (DARTS), Volume 6, Issue 2, pp. 18:1-18:2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{imai_et_al:DARTS.6.2.18,
  author =	{Imai, Keigo and Neykova, Rumyana and Yoshida, Nobuko and Yuen, Shoji},
  title =	{{Multiparty Session Programming with Global Protocol Combinators (Artifact)}},
  pages =	{18:1--18:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2020},
  volume =	{6},
  number =	{2},
  editor =	{Imai, Keigo and Neykova, Rumyana and Yoshida, Nobuko and Yuen, Shoji},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.6.2.18},
  URN =		{urn:nbn:de:0030-drops-132159},
  doi =		{10.4230/DARTS.6.2.18},
  annote =	{Keywords: Multiparty Session Types, Communication Protocol, Concurrent and Distributed Programming, OCaml}
}
Document
Multiparty Session Programming With Global Protocol Combinators

Authors: Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen

Published in: LIPIcs, Volume 166, 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
Multiparty Session Types (MPST) is a typing discipline for communication protocols. It ensures the absence of communication errors and deadlocks for well-typed communicating processes. The state-of-the-art implementations of the MPST theory rely on (1) runtime linearity checks to ensure correct usage of communication channels and (2) external domain-specific languages for specifying and verifying multiparty protocols. To overcome these limitations, we propose a library for programming with global combinators - a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours for all processes in a protocol are inferred at once from a global combinator. We formalise global combinators and prove a sound realisability of global combinators - a well-typed global combinator derives a set of local types, by which typed endpoint programs can ensure type and communication safety. Our approach enables fully-static verification and implementation of the whole protocol, from the protocol specification to the process implementations, to happen in the same language. We compare our implementation to untyped and continuation-passing style implementations, and demonstrate its expressiveness by implementing a plethora of protocols. We show our library can interoperate with existing libraries and services, implementing DNS (Domain Name Service) protocol and the OAuth (Open Authentication) protocol.

Cite as

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty Session Programming With Global Protocol Combinators. In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 166, pp. 9:1-9:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{imai_et_al:LIPIcs.ECOOP.2020.9,
  author =	{Imai, Keigo and Neykova, Rumyana and Yoshida, Nobuko and Yuen, Shoji},
  title =	{{Multiparty Session Programming With Global Protocol Combinators}},
  booktitle =	{34th European Conference on Object-Oriented Programming (ECOOP 2020)},
  pages =	{9:1--9:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-154-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{166},
  editor =	{Hirschfeld, Robert and Pape, Tobias},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2020.9},
  URN =		{urn:nbn:de:0030-drops-131662},
  doi =		{10.4230/LIPIcs.ECOOP.2020.9},
  annote =	{Keywords: Multiparty Session Types, Communication Protocol, Concurrent and Distributed Programming, OCaml}
}
Document
A Sound Algorithm for Asynchronous Session Subtyping

Authors: Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Session types, types for structuring communication between endpoints in distributed systems, are recently being integrated into mainstream programming languages. In practice, a very important notion for dealing with such types is that of subtyping, since it allows for typing larger classes of system, where a program has not precisely the expected behavior but a similar one. Unfortunately, recent work has shown that subtyping for session types in an asynchronous setting is undecidable. To cope with this negative result, the only approaches we are aware of either restrict the syntax of session types or limit communication (by considering forms of bounded asynchrony). Both approaches are too restrictive in practice, hence we proceed differently by presenting an algorithm for checking subtyping which is sound, but not complete (in some cases it terminates without returning a decisive verdict). The algorithm is based on a tree representation of the coinductive definition of asynchronous subtyping; this tree could be infinite, and the algorithm checks for the presence of finite witnesses of infinite successful subtrees. Furthermore, we provide a tool that implements our algorithm and we apply it to many examples that cannot be managed with the previous approaches.

Cite as

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A Sound Algorithm for Asynchronous Session Subtyping. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bravetti_et_al:LIPIcs.CONCUR.2019.38,
  author =	{Bravetti, Mario and Carbone, Marco and Lange, Julien and Yoshida, Nobuko and Zavattaro, Gianluigi},
  title =	{{A Sound Algorithm for Asynchronous Session Subtyping}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.38},
  URN =		{urn:nbn:de:0030-drops-109408},
  doi =		{10.4230/LIPIcs.CONCUR.2019.38},
  annote =	{Keywords: Session types, Concurrency, Subtyping, Algorithm}
}
Document
Domain-Aware Session Types

Authors: Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
We develop a generalization of existing Curry-Howard interpretations of (binary) session types by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds that indicate domains. These worlds govern domain migration, subject to a parametric accessibility relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed process framework for domain-aware, message-passing concurrency. Its logical foundations ensure that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures that processes only communicate with accessible domains and so respect the accessibility relation. Remarkably, our domain-aware framework can specify scenarios in which domain information is available only at runtime; flexible accessibility relations can be cleanly defined and statically enforced. As a specific application, we introduce domain-aware multiparty session types, in which global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a precise analysis of these multiparty protocols by reduction to our binary domain-aware framework: complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring also the principled transfer of key correctness properties from the binary to the multiparty setting.

Cite as

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session Types. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{caires_et_al:LIPIcs.CONCUR.2019.39,
  author =	{Caires, Lu{\'\i}s and P\'{e}rez, Jorge A. and Pfenning, Frank and Toninho, Bernardo},
  title =	{{Domain-Aware Session Types}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.39},
  URN =		{urn:nbn:de:0030-drops-109417},
  doi =		{10.4230/LIPIcs.CONCUR.2019.39},
  annote =	{Keywords: Session Types, Linear Logic, Process Calculi, Hybrid Logic}
}
Document
Brave New Idea Paper
Motion Session Types for Robotic Interactions (Brave New Idea Paper)

Authors: Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Robotics applications involve programming concurrent components synchronising through messages while simultaneously executing motion primitives that control the state of the physical world. Today, these applications are typically programmed in low-level imperative programming languages which provide little support for abstraction or reasoning. We present a unifying programming model for concurrent message-passing systems that additionally control the evolution of physical state variables, together with a compositional reasoning framework based on multiparty session types. Our programming model combines message-passing concurrent processes with motion primitives. Processes represent autonomous components in a robotic assembly, such as a cart or a robotic arm, and they synchronise via discrete messages as well as via motion primitives. Continuous evolution of trajectories under the action of controllers is also modelled by motion primitives, which operate in global, physical time. We use multiparty session types as specifications to orchestrate discrete message-passing concurrency and continuous flow of trajectories. A global session type specifies the communication protocol among the components with joint motion primitives. A projection from a global type ensures that jointly executed actions at end-points are communication safe and deadlock-free, i.e., session-typed components do not get stuck. Together, these checks provide a compositional verification methodology for assemblies of robotic components with respect to concurrency invariants such as a progress property of communications as well as dynamic invariants such as absence of collision. We have implemented our core language and, through initial experiments, have shown how multiparty session types can be used to specify and compositionally verify robotic systems implemented on top of off-the-shelf and custom hardware using standard robotics application libraries.

Cite as

Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion Session Types for Robotic Interactions (Brave New Idea Paper). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 28:1-28:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{majumdar_et_al:LIPIcs.ECOOP.2019.28,
  author =	{Majumdar, Rupak and Pirron, Marcus and Yoshida, Nobuko and Zufferey, Damien},
  title =	{{Motion Session Types for Robotic Interactions}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{28:1--28:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.28},
  URN =		{urn:nbn:de:0030-drops-108205},
  doi =		{10.4230/LIPIcs.ECOOP.2019.28},
  annote =	{Keywords: Session Types, Robotics, Concurrent Programming, Motions, Communications, Multiparty Session Types, Deadlock Freedom}
}
Document
Pearl
Minimal Session Types (Pearl)

Authors: Alen Arslanagić, Jorge A. Pérez, and Erik Voogd

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Session types are a type-based approach to the verification of message-passing programs. They have been much studied as type systems for the pi-calculus and for languages such as Java. A session type specifies what and when should be exchanged through a channel. Central to session-typed languages are constructs in types and processes that specify sequencing in protocols. Here we study minimal session types, session types without sequencing. This is arguably the simplest form of session types. By relying on a core process calculus with sessions and higher-order concurrency (abstraction-passing), we prove that every process typable with standard (non minimal) session types can be compiled down into a process typed with minimal session types. This means that having sequencing constructs in both processes and session types is redundant; only sequentiality in processes is indispensable, as it can precisely codify sequentiality in types. Our developments draw inspiration from work by Parrow on behavior-preserving decompositions of untyped processes. By casting Parrow’s results in the realm of typed processes, our results reveal a conceptually simple formulation of session types and a principled avenue to the integration of session types into languages without sequencing in types.

Cite as

Alen Arslanagić, Jorge A. Pérez, and Erik Voogd. Minimal Session Types (Pearl). In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 23:1-23:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{arslanagic_et_al:LIPIcs.ECOOP.2019.23,
  author =	{Arslanagi\'{c}, Alen and P\'{e}rez, Jorge A. and Voogd, Erik},
  title =	{{Minimal Session Types}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{23:1--23:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.23},
  URN =		{urn:nbn:de:0030-drops-108151},
  doi =		{10.4230/LIPIcs.ECOOP.2019.23},
  annote =	{Keywords: Session types, process calculi, pi-calculus}
}
Document
On the Expressiveness of Multiparty Sessions

Authors: Romain Demangeon and Nobuko Yoshida

Published in: LIPIcs, Volume 45, 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)


Abstract
This paper explores expressiveness of asynchronous multiparty sessions. We model the behaviours of endpoint implementations in several ways: (i) by the existence of different buffers and queues used to store messages exchanged asynchronously, (ii) by the ability for an endpoint to lightly reconfigure his behaviour at runtime (flexibility), (iii) by the presence of explicit parallelism or interruptions (exceptional actions) in endpoint behaviour. For a given protocol we define several denotations, based on traces of events, corresponding to the different implementations and compare them.

Cite as

Romain Demangeon and Nobuko Yoshida. On the Expressiveness of Multiparty Sessions. In 35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 45, pp. 560-574, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{demangeon_et_al:LIPIcs.FSTTCS.2015.560,
  author =	{Demangeon, Romain and Yoshida, Nobuko},
  title =	{{On the Expressiveness of Multiparty Sessions}},
  booktitle =	{35th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015)},
  pages =	{560--574},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-97-2},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{45},
  editor =	{Harsha, Prahladh and Ramalingam, G.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2015.560},
  URN =		{urn:nbn:de:0030-drops-56217},
  doi =		{10.4230/LIPIcs.FSTTCS.2015.560},
  annote =	{Keywords: concurrency, message-passing, session, asynchrony, expressiveness}
}
Document
Meeting Deadlines Together

Authors: Laura Bocchi, Julien Lange, and Nobuko Yoshida

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
This paper studies safety, progress, and non-zeno properties of Communicating Timed Automata (CTAs), which are timed automata (TA) extended with unbounded communication channels, and presents a procedure to build timed global specifications from systems of CTAs. We define safety and progress properties for CTAs by extending properties studied in communicating finite-state machines to the timed setting. We then study non-zenoness for CTAs; our aim is to prevent scenarios in which the participants have to execute an infinite number of actions in a finite amount of time. We propose sound and decidable conditions for these properties, and demonstrate the practicality of our approach with an implementation and experimental evaluations of our theory.

Cite as

Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together. In 26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, pp. 283-296, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bocchi_et_al:LIPIcs.CONCUR.2015.283,
  author =	{Bocchi, Laura and Lange, Julien and Yoshida, Nobuko},
  title =	{{Meeting Deadlines Together}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{283--296},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.283},
  URN =		{urn:nbn:de:0030-drops-53838},
  doi =		{10.4230/LIPIcs.CONCUR.2015.283},
  annote =	{Keywords: timed automata, multiparty session types, global specification}
}
Document
Complete Volume
OASIcs, Volume 43, ICCSW'14, Complete Volume

Authors: Rumyana Neykova and Nicholas Ng

Published in: OASIcs, Volume 43, 2014 Imperial College Computing Student Workshop


Abstract
OASIcs, Volume 43, ICCSW'14, Complete Volume

Cite as

Rumyana Neykova and Nicholas Ng. OASIcs, Volume 43, ICCSW'14, Complete Volume. In 2014 Imperial College Computing Student Workshop. Open Access Series in Informatics (OASIcs), Volume 43, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@Proceedings{neykova_et_al:OASIcs.ICCSW.2014,
  title =	{{OASIcs, Volume 43, ICCSW'14, Complete Volume}},
  booktitle =	{2014 Imperial College Computing Student Workshop},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-76-7},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{43},
  editor =	{Neykova, Rumyana and Ng, Nicholas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICCSW.2014},
  URN =		{urn:nbn:de:0030-drops-47809},
  doi =		{10.4230/OASIcs.ICCSW.2014},
  annote =	{Keywords: Languages and Compilers, Parallel Architectures, Applicative (Functional) Programming, Parallel Programming, Requirements/Specifications Software/Program Verification, Concurrent Programming, Complexity Measures and Classes, Specifying and Verifying and Reasoning about Programs,}
}
Document
Front Matter
Frontmatter, Table of Contents, Preface, Workshop Organization

Authors: Rumyana Neykova and Nicholas Ng

Published in: OASIcs, Volume 43, 2014 Imperial College Computing Student Workshop


Abstract
Frontmatter, Table of Contents, Preface, Workshop Organization

Cite as

Rumyana Neykova and Nicholas Ng. Frontmatter, Table of Contents, Preface, Workshop Organization. In 2014 Imperial College Computing Student Workshop. Open Access Series in Informatics (OASIcs), Volume 43, pp. i-xiii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{neykova_et_al:OASIcs.ICCSW.2014.i,
  author =	{Neykova, Rumyana and Ng, Nicholas},
  title =	{{Frontmatter, Table of Contents, Preface, Workshop Organization}},
  booktitle =	{2014 Imperial College Computing Student Workshop},
  pages =	{i--xiii},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-76-7},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{43},
  editor =	{Neykova, Rumyana and Ng, Nicholas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICCSW.2014.i},
  URN =		{urn:nbn:de:0030-drops-47647},
  doi =		{10.4230/OASIcs.ICCSW.2014.i},
  annote =	{Keywords: Frontmatter, Table of Contents, Preface, Workshop Organization}
}
Document
From academia to industry: The story of Google DeepMind

Authors: Shane Legg

Published in: OASIcs, Volume 43, 2014 Imperial College Computing Student Workshop


Abstract
Shane Legg left academia to cofound DeepMind Technologies in 2010, along with Demis Hassabis and Mustafa Suleyman. Their vision was to bring together cutting edge machine learning and systems neuroscience in order to create artificial agents with general intelligence. Following investments from a number of famous technology entrepreneurs, including Peter Thiel and Elon Musk, they assembled a team of world class researchers with backgrounds in systems neuroscience, deep learning, reinforcement learning and Bayesian statistics. In early 2014 DeepMind made international business headlines after it was acquired by Google. In this talk Shane covers some of the history behind DeepMind, his experience making the transition from academia to industry, how Google DeepMind performs research and finally some demos of the artificial agents that are under development.

Cite as

Shane Legg. From academia to industry: The story of Google DeepMind. In 2014 Imperial College Computing Student Workshop. Open Access Series in Informatics (OASIcs), Volume 43, p. 1, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{legg:OASIcs.ICCSW.2014.1,
  author =	{Legg, Shane},
  title =	{{From academia to industry: The story of Google DeepMind}},
  booktitle =	{2014 Imperial College Computing Student Workshop},
  pages =	{1--1},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-76-7},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{43},
  editor =	{Neykova, Rumyana and Ng, Nicholas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICCSW.2014.1},
  URN =		{urn:nbn:de:0030-drops-47650},
  doi =		{10.4230/OASIcs.ICCSW.2014.1},
  annote =	{Keywords: machine learning}
}
Document
You and Your Research and the Elements of Style

Authors: Philip Wadler

Published in: OASIcs, Volume 43, 2014 Imperial College Computing Student Workshop


Abstract
This talk surveys advice from experts, including Richard Hamming, William Strunk, E. B. White, Donald Knuth, and others, on how to conduct your research and communicate your results.

Cite as

Philip Wadler. You and Your Research and the Elements of Style. In 2014 Imperial College Computing Student Workshop. Open Access Series in Informatics (OASIcs), Volume 43, p. 2, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{wadler:OASIcs.ICCSW.2014.2,
  author =	{Wadler, Philip},
  title =	{{You and Your Research and the Elements of Style}},
  booktitle =	{2014 Imperial College Computing Student Workshop},
  pages =	{2--2},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-76-7},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{43},
  editor =	{Neykova, Rumyana and Ng, Nicholas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ICCSW.2014.2},
  URN =		{urn:nbn:de:0030-drops-47669},
  doi =		{10.4230/OASIcs.ICCSW.2014.2},
  annote =	{Keywords: research, communication}
}
  • Refine by Author
  • 9 Yoshida, Nobuko
  • 6 Neykova, Rumyana
  • 2 Imai, Keigo
  • 2 Lagaillardie, Nicolas
  • 2 Lange, Julien
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Process calculi
  • 4 Theory of computation → Type structures
  • 3 Software and its engineering → Concurrent programming languages
  • 3 Software and its engineering → Concurrent programming structures
  • 2 Software and its engineering → Functional languages
  • Show More...

  • Refine by Keyword
  • 3 Concurrency
  • 3 Multiparty Session Types
  • 3 Session types
  • 2 Artificial Intelligence
  • 2 Communication Protocol
  • Show More...

  • Refine by Type
  • 26 document
  • 1 volume

  • Refine by Publication Year
  • 17 2014
  • 4 2019
  • 2 2015
  • 2 2020
  • 2 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail