7 Search Results for "Perez, Anthony"


Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
An Improved Kernelization Algorithm for Trivially Perfect Editing

Authors: Maël Dumas and Anthony Perez

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
In the Trivially Perfect Editing problem one is given an undirected graph G = (V,E) and an integer k and seeks to add or delete at most k edges in G to obtain a trivially perfect graph. In a recent work, Dumas et al. [Dumas et al., 2023] proved that this problem admits a kernel with O(k³) vertices. This result heavily relies on the fact that the size of trivially perfect modules can be bounded by O(k²) as shown by Drange and Pilipczuk [Drange and Pilipczuk, 2018]. To obtain their cubic vertex-kernel, Dumas et al. [Dumas et al., 2023] then showed that a more intricate structure, so-called comb, can be reduced to O(k²) vertices. In this work we show that the bound can be improved to O(k) for both aforementioned structures and thus obtain a kernel with O(k²) vertices. Our approach relies on the straightforward yet powerful observation that any large enough structure contains unaffected vertices whose neighborhood remains unchanged by an editing of size k, implying strong structural properties.

Cite as

Maël Dumas and Anthony Perez. An Improved Kernelization Algorithm for Trivially Perfect Editing. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 15:1-15:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dumas_et_al:LIPIcs.IPEC.2023.15,
  author =	{Dumas, Ma\"{e}l and Perez, Anthony},
  title =	{{An Improved Kernelization Algorithm for Trivially Perfect Editing}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{15:1--15:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.15},
  URN =		{urn:nbn:de:0030-drops-194340},
  doi =		{10.4230/LIPIcs.IPEC.2023.15},
  annote =	{Keywords: Parameterized complexity, kernelization algorithms, graph modification, trivially perfect graphs}
}
Document
On Graphs Coverable by k Shortest Paths

Authors: Maël Dumas, Florent Foucaud, Anthony Perez, and Ioan Todinca

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We show that if the edges or vertices of an undirected graph G can be covered by k shortest paths, then the pathwidth of G is upper-bounded by a function of k. As a corollary, we prove that the problem Isometric Path Cover with Terminals (which, given a graph G and a set of k pairs of vertices called terminals, asks whether G can be covered by k shortest paths, each joining a pair of terminals) is FPT with respect to the number of terminals. The same holds for the similar problem Strong Geodetic Set with Terminals (which, given a graph G and a set of k terminals, asks whether there exist binom(k,2) shortest paths, each joining a distinct pair of terminals such that these paths cover G). Moreover, this implies that the related problems Isometric Path Cover and Strong Geodetic Set (defined similarly but where the set of terminals is not part of the input) are in XP with respect to parameter k.

Cite as

Maël Dumas, Florent Foucaud, Anthony Perez, and Ioan Todinca. On Graphs Coverable by k Shortest Paths. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 40:1-40:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dumas_et_al:LIPIcs.ISAAC.2022.40,
  author =	{Dumas, Ma\"{e}l and Foucaud, Florent and Perez, Anthony and Todinca, Ioan},
  title =	{{On Graphs Coverable by k Shortest Paths}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{40:1--40:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.40},
  URN =		{urn:nbn:de:0030-drops-173251},
  doi =		{10.4230/LIPIcs.ISAAC.2022.40},
  annote =	{Keywords: Shortest paths, covering problems, parameterized complexity}
}
Document
Polynomial Kernels for Strictly Chordal Edge Modification Problems

Authors: Maël Dumas, Anthony Perez, and Ioan Todinca

Published in: LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)


Abstract
We consider the Strictly Chordal Editing problem, where one is given an undirected graph G = (V,E) and a parameter k ∈ ℕ and seeks to edit (add or delete) at most k edges from G to obtain a strictly chordal graph. Problems Strictly Chordal Completion and Strictly Chordal Deletion are defined similarly, by only allowing edge additions for the former, and only edge deletions for the latter. Strictly chordal graphs are a generalization of 3-leaf power graphs and a subclass of 4-leaf power graphs. They can be defined, e.g., as dart and gem-free chordal graphs. We prove the NP-completeness for all three variants of the problem and provide an O(k³) vertex-kernel for the completion version and O(k⁴) vertex-kernels for the two others.

Cite as

Maël Dumas, Anthony Perez, and Ioan Todinca. Polynomial Kernels for Strictly Chordal Edge Modification Problems. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 17:1-17:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dumas_et_al:LIPIcs.IPEC.2021.17,
  author =	{Dumas, Ma\"{e}l and Perez, Anthony and Todinca, Ioan},
  title =	{{Polynomial Kernels for Strictly Chordal Edge Modification Problems}},
  booktitle =	{16th International Symposium on Parameterized and Exact Computation (IPEC 2021)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-216-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{214},
  editor =	{Golovach, Petr A. and Zehavi, Meirav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.17},
  URN =		{urn:nbn:de:0030-drops-154005},
  doi =		{10.4230/LIPIcs.IPEC.2021.17},
  annote =	{Keywords: Parameterized complexity, kernelization algorithms, graph modification, strictly chordal graphs}
}
Document
A Cubic Vertex-Kernel for Trivially Perfect Editing

Authors: Maël Dumas, Anthony Perez, and Ioan Todinca

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We consider the Trivially Perfect Editing problem, where one is given an undirected graph G = (V,E) and a parameter k ∈ ℕ and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete [Burzyn et al., 2006; James Nastos and Yong Gao, 2013] and to admit so-called polynomial kernels [Pål Grønås Drange and Michał Pilipczuk, 2018; Jiong Guo, 2007]. More precisely, the existence of an O(k³) vertex-kernel for Trivially Perfect Completion was announced by Guo [Jiong Guo, 2007] but without a stand-alone proof. More recently, Drange and Pilipczuk [Pål Grønås Drange and Michał Pilipczuk, 2018] provided O(k⁷) vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem.

Cite as

Maël Dumas, Anthony Perez, and Ioan Todinca. A Cubic Vertex-Kernel for Trivially Perfect Editing. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 45:1-45:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dumas_et_al:LIPIcs.MFCS.2021.45,
  author =	{Dumas, Ma\"{e}l and Perez, Anthony and Todinca, Ioan},
  title =	{{A Cubic Vertex-Kernel for Trivially Perfect Editing}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{45:1--45:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.45},
  URN =		{urn:nbn:de:0030-drops-144851},
  doi =		{10.4230/LIPIcs.MFCS.2021.45},
  annote =	{Keywords: Parameterized complexity, kernelization algorithms, graph modification, trivially perfect graphs}
}
Document
Kernels for Feedback Arc Set In Tournaments

Authors: Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé

Published in: LIPIcs, Volume 4, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (2009)


Abstract
A tournament $T = (V,A)$ is a directed graph in which there is exactly one arc between every pair of distinct vertices. Given a digraph on $n$ vertices and an integer parameter $k$, the {\sc Feedback Arc Set} problem asks whether thegiven digraph has a set of $k$ arcs whose removal results in an acyclicdigraph. The {\sc Feedback Arc Set} problem restricted to tournaments is knownas the {\sc $k$-Feedback Arc Set in Tournaments ($k$-FAST)} problem. In thispaper we obtain a linear vertex kernel for \FAST{}. That is, we give apolynomial time algorithm which given an input instance $T$ to \FAST{} obtains an equivalent instance $T'$ on $O(k)$ vertices. In fact, given any fixed $\epsilon > 0$, the kernelized instance has at most $(2 + \epsilon)k$ vertices.Our result improves the previous known bound of $O(k^2)$ on the kernel size for\FAST{}. Our kernelization algorithm solves the problem on a subclass of tournaments in polynomial time and uses a known polynomial time approximation scheme for \FAST.

Cite as

Stéphane Bessy, Fedor V. Fomin, Serge Gaspers, Christophe Paul, Anthony Perez, Saket Saurabh, and Stéphan Thomassé. Kernels for Feedback Arc Set In Tournaments. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), Volume 4, pp. 37-47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.FSTTCS.2009.2305,
  author =	{Bessy, St\'{e}phane and Fomin, Fedor V. and Gaspers, Serge and Paul, Christophe and Perez, Anthony and Saurabh, Saket and Thomass\'{e}, St\'{e}phan},
  title =	{{Kernels for Feedback Arc Set In Tournaments}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science},
  pages =	{37--47},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-13-2},
  ISSN =	{1868-8969},
  year =	{2009},
  volume =	{4},
  editor =	{Kannan, Ravi and Narayan Kumar, K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2009.2305},
  URN =		{urn:nbn:de:0030-drops-23055},
  doi =		{10.4230/LIPIcs.FSTTCS.2009.2305},
  annote =	{Keywords: Parameterized complexity, kernels, tournaments}
}
Document
Learning Grammatical Models for Object Recognition

Authors: Meg Aycinena Lippow, Leslie Pack Kaelbling, and Tomas Lozano-Perez

Published in: Dagstuhl Seminar Proceedings, Volume 8091, Logic and Probability for Scene Interpretation (2008)


Abstract
Many object recognition systems are limited by their inability to share common parts or structure among related object classes. This capability is desirable because it allows information about parts and relationships in one object class to be generalized to other classes for which it is relevant. This ability has the potential to allow effective parameter learning from fewer examples and better generalization of the learned models to unseen instances, and it enables more efficient recognition. With this goal in mind, we have designed a representation and recognition framework that captures structural variability and shared part structure within and among object classes. The framework uses probabilistic geometric grammars (PGGs) to represent object classes recursively in terms of their parts, thereby exploiting the hierarchical and substitutive structure inherent to many types of objects. To incorporate geometric and appearance information, we extend traditional probabilistic context-free grammars to represent distributions over the relative geometric characteristics of object parts as well as the appearance of primitive parts. We describe an efficient dynamic programming algorithm for object categorization and localization in images given a PGG model. We also develop an EM algorithm to estimate the parameters of a grammar structure from training data, and a search-based structure learning approach that finds a compact grammar to explain the image data while sharing substructure among classes. Finally, we describe a set of experiments that demonstrate empirically that the system provides a performance benefit.

Cite as

Meg Aycinena Lippow, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Learning Grammatical Models for Object Recognition. In Logic and Probability for Scene Interpretation. Dagstuhl Seminar Proceedings, Volume 8091, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{aycinenalippow_et_al:DagSemProc.08091.9,
  author =	{Aycinena Lippow, Meg and Kaelbling, Leslie Pack and Lozano-Perez, Tomas},
  title =	{{Learning Grammatical Models for Object Recognition}},
  booktitle =	{Logic and Probability for Scene Interpretation},
  pages =	{1--15},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8091},
  editor =	{Anthony G. Cohn and David C. Hogg and Ralf M\"{o}ller and Bernd Neumann},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08091.9},
  URN =		{urn:nbn:de:0030-drops-16113},
  doi =		{10.4230/DagSemProc.08091.9},
  annote =	{Keywords: Object recognition, grammars, structure learning}
}
  • Refine by Author
  • 5 Perez, Anthony
  • 4 Dumas, Maël
  • 3 Todinca, Ioan
  • 1 Aycinena Lippow, Meg
  • 1 Bessy, Stéphane
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • 1 Theory of computation → Complexity theory and logic
  • Show More...

  • Refine by Keyword
  • 4 Parameterized complexity
  • 3 graph modification
  • 3 kernelization algorithms
  • 2 trivially perfect graphs
  • 1 Applications of logics
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2021
  • 1 2008
  • 1 2009
  • 1 2022
  • 1 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail