3 Search Results for "Rice, Alex A."


Document
Automating Boundary Filling in Cubical Agda

Authors: Maximilian Doré, Evan Cavallo, and Anders Mörtberg

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
When working in a proof assistant, automation is key to discharging routine proof goals such as equations between algebraic expressions. Homotopy Type Theory allows the user to reason about higher structures, such as topological spaces, using higher inductive types (HITs) and univalence. Cubical Agda is an extension of Agda with computational support for HITs and univalence. A difficulty when working in Cubical Agda is dealing with the complex combinatorics of higher structures, an infinite-dimensional generalisation of equational reasoning. To solve these higher-dimensional equations consists in constructing cubes with specified boundaries. We develop a simplified cubical language in which we isolate and study two automation problems: contortion solving, where we attempt to "contort" a cube to fit a given boundary, and the more general Kan solving, where we search for solutions that involve pasting multiple cubes together. Both problems are difficult in the general case - Kan solving is even undecidable - so we focus on heuristics that perform well on practical examples. We provide a solver for the contortion problem using a reformulation of contortions in terms of poset maps, while we solve Kan problems using constraint satisfaction programming. We have implemented our algorithms in an experimental Haskell solver that can be used to automatically solve goals presented by Cubical Agda. We illustrate this with a case study establishing the Eckmann-Hilton theorem using our solver, as well as various benchmarks - providing the ground for further study of proof automation in cubical type theories.

Cite as

Maximilian Doré, Evan Cavallo, and Anders Mörtberg. Automating Boundary Filling in Cubical Agda. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dore_et_al:LIPIcs.FSCD.2024.22,
  author =	{Dor\'{e}, Maximilian and Cavallo, Evan and M\"{o}rtberg, Anders},
  title =	{{Automating Boundary Filling in Cubical Agda}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.22},
  URN =		{urn:nbn:de:0030-drops-203514},
  doi =		{10.4230/LIPIcs.FSCD.2024.22},
  annote =	{Keywords: Cubical Agda, Automated Reasoning, Constraint Satisfaction Programming}
}
Document
homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Authors: Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation of proof objects via a graphical representation. We describe the user interface and explain how the tool can be used in practice. We also describe the essential subsystems of the tool, including collapse, contraction, expansion, typechecking, and layout, as well as key implementation details including data structure encoding, memoisation, and rendering. These technical innovations have been essential for achieving good performance in a resource-constrained setting.

Cite as

Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary. homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 30:1-30:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{corbyn_et_al:LIPIcs.FSCD.2024.30,
  author =	{Corbyn, Nathan and Heidemann, Lukas and Hu, Nick and Sarti, Chiara and Tataru, Calin and Vicary, Jamie},
  title =	{{homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{30:1--30:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.30},
  URN =		{urn:nbn:de:0030-drops-203594},
  doi =		{10.4230/LIPIcs.FSCD.2024.30},
  annote =	{Keywords: Higher category theory, proof assistant, string diagrams}
}
Document
New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial

Authors: Anupam Das and Alex A. Rice

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. Equivalently, it is a linear rewrite rule on Boolean terms that constitutes a valid implication. Linear inferences have played a significant role in structural proof theory, in particular in models of substructural logics and in normalisation arguments for deep inference proof systems. Systems of linear logic and, later, deep inference are founded upon two particular linear inferences, switch : x ∧ (y ∨ z) → (x ∧ y) ∨ z, and medial : (w ∧ x) ∨ (y ∧ z) → (w ∨ y) ∧ (x ∨ z). It is well-known that these two are not enough to derive all linear inferences (even modulo all valid linear equations), but beyond this little more is known about the structure of linear inferences in general. In particular despite recurring attention in the literature, the smallest linear inference not derivable under switch and medial ("switch-medial-independent") was not previously known. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find two "minimal" 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. One of these new inferences derives some previously found independent linear inferences. The other exhibits structure seemingly beyond the scope of previous approaches we are aware of; in particular, its existence contradicts a conjecture of Das and Strassburger.

Cite as

Anupam Das and Alex A. Rice. New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.FSCD.2021.14,
  author =	{Das, Anupam and Rice, Alex A.},
  title =	{{New Minimal Linear Inferences in Boolean Logic Independent of Switch and Medial}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.14},
  URN =		{urn:nbn:de:0030-drops-142525},
  doi =		{10.4230/LIPIcs.FSCD.2021.14},
  annote =	{Keywords: rewriting, linear inference, proof theory, linear logic, implementation}
}
  • Refine by Author
  • 1 Cavallo, Evan
  • 1 Corbyn, Nathan
  • 1 Das, Anupam
  • 1 Doré, Maximilian
  • 1 Heidemann, Lukas
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Theorem proving algorithms
  • 1 Software and its engineering → Software notations and tools
  • 1 Theory of computation → Automated reasoning
  • 1 Theory of computation → Constraint and logic programming
  • 1 Theory of computation → Equational logic and rewriting
  • Show More...

  • Refine by Keyword
  • 1 Automated Reasoning
  • 1 Constraint Satisfaction Programming
  • 1 Cubical Agda
  • 1 Higher category theory
  • 1 implementation
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2021