2 Search Results for "Segal, Michael"


Document
Engineering a Preprocessor for Symmetry Detection

Authors: Markus Anders, Pascal Schweitzer, and Julian Stieß

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
State-of-the-art solvers for symmetry detection in combinatorial objects are becoming increasingly sophisticated software libraries. Most of the solvers were initially designed with inputs from combinatorics in mind (nauty, bliss, Traces, dejavu). They excel at dealing with a complicated core of the input. Others focus on practical instances that exhibit sparsity. They excel at dealing with comparatively easy but extremely large substructures of the input (saucy). In practice, these differences manifest in significantly diverging performances on different types of graph classes. We engineer a preprocessor for symmetry detection. The result is a tool designed to shrink sparse, large substructures of the input graph. On most of the practical instances, the preprocessor improves the overall running time significantly for many of the state-of-the-art solvers. At the same time, our benchmarks show that the additional overhead is negligible. Overall we obtain single algorithms with competitive performance across all benchmark graphs. As such, the preprocessor bridges the disparity between solvers that focus on combinatorial graphs and large practical graphs. In fact, on most of the practical instances the combined setup significantly outperforms previous state-of-the-art.

Cite as

Markus Anders, Pascal Schweitzer, and Julian Stieß. Engineering a Preprocessor for Symmetry Detection. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 1:1-1:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{anders_et_al:LIPIcs.SEA.2023.1,
  author =	{Anders, Markus and Schweitzer, Pascal and Stie{\ss}, Julian},
  title =	{{Engineering a Preprocessor for Symmetry Detection}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{1:1--1:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.1},
  URN =		{urn:nbn:de:0030-drops-183511},
  doi =		{10.4230/LIPIcs.SEA.2023.1},
  annote =	{Keywords: graph isomorphism, automorphism groups, symmetry detection, preprocessors}
}
Document
Locating Battery Charging Stations to Facilitate Almost Shortest Paths

Authors: Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and Michael Segal

Published in: OASIcs, Volume 42, 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2014)


Abstract
We study a facility location problem motivated by requirements pertaining to the distribution of charging stations for electric vehicles: Place a minimum number of battery charging stations at a subset of nodes of a network, so that battery-powered electric vehicles will be able to move between destinations using "t-spanning" routes, of lengths within a factor t > 1 of the length of a shortest path, while having sufficient charging stations along the way. We give constant-factor approximation algorithms for minimizing the number of charging stations, subject to the t-spanning constraint. We study two versions of the problem, one in which the stations are required to support a single ride (to a single destination), and one in which the stations are to support multiple rides through a sequence of destinations, where the destinations are revealed one at a time.

Cite as

Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and Michael Segal. Locating Battery Charging Stations to Facilitate Almost Shortest Paths. In 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 42, pp. 25-33, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{arkin_et_al:OASIcs.ATMOS.2014.25,
  author =	{Arkin, Esther M. and Carmi, Paz and Katz, Matthew J. and Mitchell, Joseph S. B. and Segal, Michael},
  title =	{{Locating Battery Charging Stations to Facilitate Almost Shortest Paths}},
  booktitle =	{14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems},
  pages =	{25--33},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-75-0},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{42},
  editor =	{Funke, Stefan and Mihal\'{a}k, Mat\'{u}s},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2014.25},
  URN =		{urn:nbn:de:0030-drops-47500},
  doi =		{10.4230/OASIcs.ATMOS.2014.25},
  annote =	{Keywords: approximation algorithms; geometric spanners; transportation networks}
}
  • Refine by Author
  • 1 Anders, Markus
  • 1 Arkin, Esther M.
  • 1 Carmi, Paz
  • 1 Katz, Matthew J.
  • 1 Mitchell, Joseph S. B.
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Graph algorithms

  • Refine by Keyword
  • 1 approximation algorithms; geometric spanners; transportation networks
  • 1 automorphism groups
  • 1 graph isomorphism
  • 1 preprocessors
  • 1 symmetry detection

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2014
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail