3 Search Results for "Segal, Michael"


Document
Track A: Algorithms, Complexity and Games
New Tradeoffs for Decremental Approximate All-Pairs Shortest Paths

Authors: Michal Dory, Sebastian Forster, Yasamin Nazari, and Tijn de Vos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide new tradeoffs between approximation and running time for the decremental all-pairs shortest paths (APSP) problem. For undirected graphs with m edges and n nodes undergoing edge deletions, we provide four new approximate decremental APSP algorithms, two for weighted and two for unweighted graphs. Our first result is (2+ε)-APSP with total update time Õ(m^{1/2}n^{3/2}) (when m = n^{1+c} for any constant 0 < c < 1). Prior to our work the fastest algorithm for weighted graphs with approximation at most 3 had total Õ(mn) update time for (1+ε)-APSP [Bernstein, SICOMP 2016]. Our second result is (2+ε, W_{u,v})-APSP with total update time Õ(nm^{3/4}), where the second term is an additive stretch with respect to W_{u,v}, the maximum weight on the shortest path from u to v. Our third result is (2+ε)-APSP for unweighted graphs in Õ(m^{7/4}) update time, which for sparse graphs (m = o(n^{8/7})) is the first subquadratic (2+ε)-approximation. Our last result for unweighted graphs is (1+ε, 2(k-1))-APSP, for k ≥ 2, with Õ(n^{2-1/k}m^{1/k}) total update time (when m = n^{1+c} for any constant c > 0). For comparison, in the special case of (1+ε, 2)-approximation, this improves over the state-of-the-art algorithm by [Henzinger, Krinninger, Nanongkai, SICOMP 2016] with total update time of Õ(n^{2.5}). All of our results are randomized, work against an oblivious adversary, and have constant query time.

Cite as

Michal Dory, Sebastian Forster, Yasamin Nazari, and Tijn de Vos. New Tradeoffs for Decremental Approximate All-Pairs Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 58:1-58:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dory_et_al:LIPIcs.ICALP.2024.58,
  author =	{Dory, Michal and Forster, Sebastian and Nazari, Yasamin and de Vos, Tijn},
  title =	{{New Tradeoffs for Decremental Approximate All-Pairs Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{58:1--58:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.58},
  URN =		{urn:nbn:de:0030-drops-202012},
  doi =		{10.4230/LIPIcs.ICALP.2024.58},
  annote =	{Keywords: Decremental Shortest Path, All-Pairs Shortest Paths}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Symmetric Convex Functions over Hybrid of Continuous and Discrete Convex Sets

Authors: Yasushi Kawase, Koichi Nishimura, and Hanna Sumita

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the problem of minimizing a given symmetric strictly convex function over the Minkowski sum of an integral base-polyhedron and an M-convex set. This problem has a hybrid of continuous and discrete structures. This emerges from the problem of allocating mixed goods, consisting of both divisible and indivisible goods, to agents with binary valuations so that the fairness measure, such as the Nash welfare, is maximized. It is known that both an integral base-polyhedron and an M-convex set have similar and nice properties, and the non-hybrid case can be solved in polynomial time. While the hybrid case lacks some of these properties, we show the structure of an optimal solution. Moreover, we exploit a proximity inherent in the problem. Through our findings, we demonstrate that our problem is NP-hard even in the fair allocation setting where all indivisible goods are identical. Moreover, we provide a polynomial-time algorithm for the fair allocation problem when all divisible goods are identical.

Cite as

Yasushi Kawase, Koichi Nishimura, and Hanna Sumita. Minimizing Symmetric Convex Functions over Hybrid of Continuous and Discrete Convex Sets. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 96:1-96:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kawase_et_al:LIPIcs.ICALP.2024.96,
  author =	{Kawase, Yasushi and Nishimura, Koichi and Sumita, Hanna},
  title =	{{Minimizing Symmetric Convex Functions over Hybrid of Continuous and Discrete Convex Sets}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{96:1--96:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.96},
  URN =		{urn:nbn:de:0030-drops-202393},
  doi =		{10.4230/LIPIcs.ICALP.2024.96},
  annote =	{Keywords: Integral base-polyhedron, Fair allocation, Matroid}
}
Document
Locating Battery Charging Stations to Facilitate Almost Shortest Paths

Authors: Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and Michael Segal

Published in: OASIcs, Volume 42, 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (2014)


Abstract
We study a facility location problem motivated by requirements pertaining to the distribution of charging stations for electric vehicles: Place a minimum number of battery charging stations at a subset of nodes of a network, so that battery-powered electric vehicles will be able to move between destinations using "t-spanning" routes, of lengths within a factor t > 1 of the length of a shortest path, while having sufficient charging stations along the way. We give constant-factor approximation algorithms for minimizing the number of charging stations, subject to the t-spanning constraint. We study two versions of the problem, one in which the stations are required to support a single ride (to a single destination), and one in which the stations are to support multiple rides through a sequence of destinations, where the destinations are revealed one at a time.

Cite as

Esther M. Arkin, Paz Carmi, Matthew J. Katz, Joseph S. B. Mitchell, and Michael Segal. Locating Battery Charging Stations to Facilitate Almost Shortest Paths. In 14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. Open Access Series in Informatics (OASIcs), Volume 42, pp. 25-33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{arkin_et_al:OASIcs.ATMOS.2014.25,
  author =	{Arkin, Esther M. and Carmi, Paz and Katz, Matthew J. and Mitchell, Joseph S. B. and Segal, Michael},
  title =	{{Locating Battery Charging Stations to Facilitate Almost Shortest Paths}},
  booktitle =	{14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems},
  pages =	{25--33},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-75-0},
  ISSN =	{2190-6807},
  year =	{2014},
  volume =	{42},
  editor =	{Funke, Stefan and Mihal\'{a}k, Mat\'{u}s},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2014.25},
  URN =		{urn:nbn:de:0030-drops-47500},
  doi =		{10.4230/OASIcs.ATMOS.2014.25},
  annote =	{Keywords: approximation algorithms; geometric spanners; transportation networks}
}
  • Refine by Author
  • 1 Arkin, Esther M.
  • 1 Carmi, Paz
  • 1 Dory, Michal
  • 1 Forster, Sebastian
  • 1 Katz, Matthew J.
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Combinatorial optimization
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Dynamic graph algorithms
  • 1 Theory of computation → Shortest paths

  • Refine by Keyword
  • 1 All-Pairs Shortest Paths
  • 1 Decremental Shortest Path
  • 1 Fair allocation
  • 1 Integral base-polyhedron
  • 1 Matroid
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2014