3 Search Results for "Shen, Xipeng"


Document
Constraint Modelling with LLMs Using In-Context Learning

Authors: Kostis Michailidis, Dimos Tsouros, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) allows for the modelling and solving of a wide range of combinatorial problems. However, modelling such problems using constraints over decision variables still requires significant expertise, both in conceptual thinking and syntactic use of modelling languages. In this work, we explore the potential of using pre-trained Large Language Models (LLMs) as coding assistants, to transform textual problem descriptions into concrete and executable CP specifications. We present different transformation pipelines with explicit intermediate representations, and we investigate the potential benefit of various retrieval-augmented example selection strategies for in-context learning. We evaluate our approach on 2 datasets from the literature, namely NL4Opt (optimisation) and Logic Grid Puzzles (satisfaction), and a heterogeneous set of exercises from a CP course. The results show that pre-trained LLMs have promising potential for initialising the modelling process, with retrieval-augmented in-context learning significantly enhancing their modelling capabilities.

Cite as

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint Modelling with LLMs Using In-Context Learning. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 20:1-20:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{michailidis_et_al:LIPIcs.CP.2024.20,
  author =	{Michailidis, Kostis and Tsouros, Dimos and Guns, Tias},
  title =	{{Constraint Modelling with LLMs Using In-Context Learning}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{20:1--20:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.20},
  URN =		{urn:nbn:de:0030-drops-207053},
  doi =		{10.4230/LIPIcs.CP.2024.20},
  annote =	{Keywords: Constraint Modelling, Constraint Acquisition, Constraint Programming, Large Language Models, In-Context Learning, Natural Language Processing, Named Entity Recognition, Retrieval-Augmented Generation, Optimisation}
}
Document
Best-Effort Lazy Evaluation for Python Software Built on APIs

Authors: Guoqiang Zhang and Xipeng Shen

Published in: LIPIcs, Volume 194, 35th European Conference on Object-Oriented Programming (ECOOP 2021)


Abstract
This paper focuses on an important optimization opportunity in Python-hosted domain-specific languages (DSLs): the use of laziness for optimization, whereby multiple API calls are deferred and then optimized prior to execution (rather than executing eagerly, which would require executing each call in isolation). In existing supports of lazy evaluation, laziness is "terminated" as soon as control passes back to the host language in any way, limiting opportunities for optimization. This paper presents Cunctator, a framework that extends this laziness to more of the Python language, allowing intermediate values from DSLs like NumPy or Pandas to flow back to the host Python code without triggering evaluation. This exposes more opportunities for optimization and, more generally, allows for larger computation graphs to be built, producing 1.03-14.2X speedups on a set of programs in common libraries and frameworks.

Cite as

Guoqiang Zhang and Xipeng Shen. Best-Effort Lazy Evaluation for Python Software Built on APIs. In 35th European Conference on Object-Oriented Programming (ECOOP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 194, pp. 15:1-15:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.ECOOP.2021.15,
  author =	{Zhang, Guoqiang and Shen, Xipeng},
  title =	{{Best-Effort Lazy Evaluation for Python Software Built on APIs}},
  booktitle =	{35th European Conference on Object-Oriented Programming (ECOOP 2021)},
  pages =	{15:1--15:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-190-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{194},
  editor =	{M{\o}ller, Anders and Sridharan, Manu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2021.15},
  URN =		{urn:nbn:de:0030-drops-140582},
  doi =		{10.4230/LIPIcs.ECOOP.2021.15},
  annote =	{Keywords: Lazy Evaluation, Python, API Optimization}
}
Document
Towards Ontology-Based Program Analysis

Authors: Yue Zhao, Guoyang Chen, Chunhua Liao, and Xipeng Shen

Published in: LIPIcs, Volume 56, 30th European Conference on Object-Oriented Programming (ECOOP 2016)


Abstract
Program analysis is fundamental for program optimizations, debugging, and many other tasks. But developing program analyses has been a challenging and error-prone process for general users. Declarative program analysis has shown the promise to dramatically improve the productivity in the development of program analyses. Current declarative program analysis is however subject to some major limitations in supporting cooperations among analysis tools, guiding program optimizations, and often requires much effort for repeated program preprocessing. In this work, we advocate the integration of ontology into declarative program analysis. As a way to standardize the definitions of concepts in a domain and the representation of the knowledge in the domain, ontology offers a promising way to address the limitations of current declarative program analysis. We develop a prototype framework named PATO for conducting program analysis upon ontology-based program representation. Experiments on six program analyses confirm the potential of ontology for complementing existing declarative program analysis. It supports multiple analyses without separate program preprocessing, promotes cooperative Liveness analysis between two compilers, and effectively guides a data placement optimization for Graphic Processing Units (GPU).

Cite as

Yue Zhao, Guoyang Chen, Chunhua Liao, and Xipeng Shen. Towards Ontology-Based Program Analysis. In 30th European Conference on Object-Oriented Programming (ECOOP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 56, pp. 26:1-26:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{zhao_et_al:LIPIcs.ECOOP.2016.26,
  author =	{Zhao, Yue and Chen, Guoyang and Liao, Chunhua and Shen, Xipeng},
  title =	{{Towards Ontology-Based Program Analysis}},
  booktitle =	{30th European Conference on Object-Oriented Programming (ECOOP 2016)},
  pages =	{26:1--26:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-014-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{56},
  editor =	{Krishnamurthi, Shriram and Lerner, Benjamin S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2016.26},
  URN =		{urn:nbn:de:0030-drops-61201},
  doi =		{10.4230/LIPIcs.ECOOP.2016.26},
  annote =	{Keywords: ontology, compiler, program analysis}
}
  • Refine by Author
  • 2 Shen, Xipeng
  • 1 Chen, Guoyang
  • 1 Guns, Tias
  • 1 Liao, Chunhua
  • 1 Michailidis, Kostis
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 API Optimization
  • 1 Constraint Acquisition
  • 1 Constraint Modelling
  • 1 Constraint Programming
  • 1 In-Context Learning
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2016
  • 1 2021
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail