3 Search Results for "Srivastav, Anand"


Document
Track A: Algorithms, Complexity and Games
Low-Memory Algorithms for Online Edge Coloring

Authors: Prantar Ghosh and Manuel Stoeckl

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to be sublinear in the input size but allows an edge’s color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge coloring. Our online algorithms significantly improve upon the memory used by prior ones while achieving an O(1)-competitive ratio. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Under vertex arrivals of any n-node graph with maximum vertex-degree Δ, our online O(Δ)-coloring algorithm uses only semi-streaming space (i.e., Õ(n) space, where the Õ(.) notation hides polylog(n) factors). Under edge arrivals, we obtain an online O(Δ)-coloring in Õ(n√Δ) space. We also achieve a smooth color-space tradeoff: for any t = O(Δ), we get an O(Δt(log²Δ))-coloring in Õ(n√{Δ/t}) space, improving upon the state of the art that used Õ(nΔ/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.

Cite as

Prantar Ghosh and Manuel Stoeckl. Low-Memory Algorithms for Online Edge Coloring. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 71:1-71:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ICALP.2024.71,
  author =	{Ghosh, Prantar and Stoeckl, Manuel},
  title =	{{Low-Memory Algorithms for Online Edge Coloring}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{71:1--71:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.71},
  URN =		{urn:nbn:de:0030-drops-202146},
  doi =		{10.4230/LIPIcs.ICALP.2024.71},
  annote =	{Keywords: Edge coloring, streaming model, online algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Edge Coloring with Asymptotically Optimal Colors

Authors: Mohammad Saneian and Soheil Behnezhad

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Given a graph G, an edge-coloring is an assignment of colors to edges of G such that any two edges sharing an endpoint receive different colors. By Vizing’s celebrated theorem, any graph of maximum degree Δ needs at least Δ and at most (Δ + 1) colors to be properly edge colored. In this paper, we study edge colorings in the streaming setting. The edges arrive one by one in an arbitrary order. The algorithm takes a single pass over the input and must output a solution using a much smaller space than the input size. Since the output of edge coloring is as large as its input, the assigned colors should also be reported in a streaming fashion. The streaming edge coloring problem has been studied in a series of works over the past few years. The main challenge is that the algorithm cannot "remember" all the color assignments that it returns. To ensure the validity of the solution, existing algorithms use many more colors than Vizing’s bound. Namely, in n-vertex graphs, the state-of-the-art algorithm with Õ(n s) space requires O(Δ²/s + Δ) colors. Note, in particular, that for an asymptotically optimal O(Δ) coloring, this algorithm requires Ω(nΔ) space which is as large as the input. Whether such a coloring can be achieved with sublinear space has been left open. In this paper, we answer this question in the affirmative. We present a randomized algorithm that returns an asymptotically optimal O(Δ) edge coloring using Õ(n √{Δ}) space. More generally, our algorithm returns a proper O(Δ^{1.5}/s + Δ) edge coloring with Õ(n s) space, improving prior algorithms for the whole range of s.

Cite as

Mohammad Saneian and Soheil Behnezhad. Streaming Edge Coloring with Asymptotically Optimal Colors. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saneian_et_al:LIPIcs.ICALP.2024.121,
  author =	{Saneian, Mohammad and Behnezhad, Soheil},
  title =	{{Streaming Edge Coloring with Asymptotically Optimal Colors}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.121},
  URN =		{urn:nbn:de:0030-drops-202640},
  doi =		{10.4230/LIPIcs.ICALP.2024.121},
  annote =	{Keywords: Streaming, Edge coloring, Adversarial order}
}
Document
A Streaming Algorithm for the Undirected Longest Path Problem

Authors: Lasse Kliemann, Christian Schielke, and Anand Srivastav

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We present the first streaming algorithm for the longest path problem in undirected graphs. The input graph is given as a stream of edges and RAM is limited to only a linear number of edges at a time (linear in the number of vertices n). We prove a per-edge processing time of O(n), where a naive solution would have required Omega(n^2). Moreover, we give a concrete linear upper bound on the number of bits of RAM that are required. On a set of graphs with various structure, we experimentally compare our algorithm with three leading RAM algorithms: Warnsdorf (1823), Pohl-Warnsdorf (1967), and Pongrasz (2012). Although conducting only a small constant number of passes over the input, our algorithm delivers competitive results: with the exception of preferential attachment graphs, we deliver at least 71% of the solution of the best RAM algorithm. The same minimum relative performance of 71% is observed over all graph classes after removing the 10% worst cases. This comparison has strong meaning, since for each instance class there is one algorithm that on average delivers at least 84% of a Hamilton path. In some cases we deliver even better results than any of the RAM algorithms.

Cite as

Lasse Kliemann, Christian Schielke, and Anand Srivastav. A Streaming Algorithm for the Undirected Longest Path Problem. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 56:1-56:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{kliemann_et_al:LIPIcs.ESA.2016.56,
  author =	{Kliemann, Lasse and Schielke, Christian and Srivastav, Anand},
  title =	{{A Streaming Algorithm for the Undirected Longest Path Problem}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{56:1--56:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.56},
  URN =		{urn:nbn:de:0030-drops-63980},
  doi =		{10.4230/LIPIcs.ESA.2016.56},
  annote =	{Keywords: Streaming Algorithms, Undirected Longest Path Problem, Graph Algorithms, Combinatorial Optimization}
}
  • Refine by Author
  • 1 Behnezhad, Soheil
  • 1 Ghosh, Prantar
  • 1 Kliemann, Lasse
  • 1 Saneian, Mohammad
  • 1 Schielke, Christian
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Graph coloring
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Streaming, sublinear and near linear time algorithms

  • Refine by Keyword
  • 2 Edge coloring
  • 1 Adversarial order
  • 1 Combinatorial Optimization
  • 1 Graph Algorithms
  • 1 Streaming
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 2 2024
  • 1 2016